In this paper, we present (i) a computational model of Dynamic Symmetry of human movement, and (ii) a system to teach this movement quality (symmetry or asymmetry) by means of an interactive sonification exergame based on IMU sensors and the EyesWeb XMI software platform. The implemented system is available as a demo at the workshop.
This paper presents a conceptual framework for the analysis of expressive qualities of movement. Our perspective is to model an observer of a dance performance. The conceptual framework is made of four layers, ranging from the physical signals that sensors capture to the qualities that movement communicate (e.g., in terms of emotions). The framework aims to provide a conceptual background the development of computational systems can build upon, with a particular reference to systems analyzing a vocabulary of expressive movement qualities, and translating them to other sensory channels, such as the auditory modality. Such systems enable their users to "listen to a choreography" or to "feel a ballet", in a new kind of cross-modal mediated experience.
This research is a part of a broader project exploring how movement qualities can be recognized by means of the auditory channel: can we perceive an expressive full-body movement quality by means of its interactive sonification? The paper presents a sonification framework and an experiment to evaluate if embodied sonic training (i.e., experiencing interactive sonification of your own body movements) increases the recognition of such qualities through the auditory channel only, compared to a non-embodied sonic training condition. We focus on the sonification of two mid-level movement qualities: fragility and lightness. We base our sonification models, described in the first part, on the assumption that specific compounds of spectral features of a sound can contribute to the cross-modal perception of a specific movement quality. The experiment, described in the second part, involved 40 participants divided into two groups (embodied sonic training vs. no training). Participants were asked to report the level of lightness and fragility they perceived in 20 audio stimuli generated using the proposed sonification models. Results show that (1) both expressive qualities were correctly recognized from the audio stimuli, (2) a positive effect of embodied sonic training was observed for fragility but not for lightness. The paper is concluded by the description of the artistic performance that took place in 2017 in Genoa (Italy), in which the outcomes of the presented experiment were exploited.
KeywordsSonification • Expressive qualities • Lightness • Fragility • Movement qualities • Embodied training M. Mancini participated to this work while being member of the Casa Paganini-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.