Full-body human movement is characterized by fine-grain expressive qualities that humans are easily capable of exhibiting and recognizing in others' movement. In sports (e.g., martial arts) and performing arts (e.g., dance), the same sequence of movements can be performed in a wide range of ways characterized by different qualities, often in terms of subtle (spatial and temporal) perturbations of the movement. Even a non-expert observer can distinguish between a top-level and average performance by a dancer or martial artist. The difference is not in the performed movements-the same in both cases-but in the "quality" of their performance.In this article, we present a computational framework aimed at an automated approximate measure of movement quality in full-body physical activities. Starting from motion capture data, the framework computes low-level (e.g., a limb velocity) and high-level (e.g., synchronization between different limbs) movement features. Then, this vector of features is integrated to compute a value aimed at providing a quantitative assessment of movement quality approximating the evaluation that an external expert observer would give of the same sequence of movements. Next, a system representing a concrete implementation of the framework is proposed. Karate is adopted as a testbed. We selected two different katas (i.e., detailed choreographies of movements in karate) characterized by different overall attitudes and expressions (aggressiveness, meditation), and we asked seven athletes, having various levels of experience and age, to perform them. Motion capture data were collected from the performances and were analyzed with the system. The results of the automated analysis were compared with the scores given by 14 karate experts who rated the same performances. Results show that the movementquality scores computed by the system and the ratings given by the human observers are highly correlated (Pearson's correlations r = 0.84, p = 0.001 and r = 0.75, p = 0.005).
A multimodal dataset is presented, which has been collected for analyzing and measuring the quality of movement performed during sport activities. Martial arts (namely karate) are taken as test-beds for investigation. Karate encompasses predefined sequences of movements ("katas") that can be carried out with different qualities, e.g., by performers at different skill levels (highly vs. poorly skilled). The experimental setup and method are described. The dataset is composed of motion capture (MoCap) data, synchronized with video and audio recordings, of several participants with different levels of experience. The raw MoCap data are independent of any particular post-processing algorithm and can be used for other research purposes. In the second part of the paper, a set of measures is proposed to evaluate a kata performance. They are based on the geometrical and kinematic features, such as posture correctness and synchronization between limbs. and were chosen according to karate experts' opinion.
In this paper we describe a serious games platfrom for validating sonification of human full-body movement qualities. This platform supports the design and development of serious games aiming at validating (i) our techniques to measure expressive movement qualities, and (ii) the mapping strategies to translate such qualities in the auditory domain, by means of interactive sonification and active music experience. The platform is a part of a more general framework developed in the context of the EU ICT H2020 DANCE "Dancing in the dark" Project n.645553 that aims at enabling the perception of nonverbal artistic whole-body experiences to visual impaired people
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.