Metals in wine occur at the mg l(-1) level or less and, though not directly related to the taste of the final product, their content should be determined because excess is undesirable, and in some cases prohibited, due to potential toxicity. Lead content in wine, for example, is restricted in several states by legislation to guarantee consumer health protection. Of several methods for metal determination, techniques of atomic spectroscopy are the most sensitive and rapid. Most of the elements present in wine can be determined with these techniques, at concentrations ranging from the mg l(-1) to the microg l(-1) level. Here, inductively coupled plasma-atomic emission spectrometry (ICP-AES), flame atomic absorption spectrometry (flame-AAS) and graphite furnace-atomic absorption spectrometry (GF-AAS) are compared for their characteristics as employed in metal determination in wine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.