Highly antibiotic resistant, microbial communities, referred to as biofilms, cause various life-threatening infections in humans. At least two-thirds of all clinical infections are biofilm associated, and antibiotic therapy regularly fails to cure patients. Anti-biofilm peptides represent a promising approach to treat these infections by targeting biofilm-specific characteristics such as highly conserved regulatory mechanisms. They are being considered for clinical application and we discuss here key factors in discovery, design, and application, particularly the implementation of host-mimicking conditions, that are required to enable the successful advancement of potent anti-biofilm peptides from the bench to the clinic.
Pseudomonas aeruginosa causes severe multidrug-resistant infections that often lead to bacteremia and sepsis. Physiologically relevant conditions can increase the susceptibility of pathogens to antibiotics, such as azithromycin (AZM). When compared to minimal-inhibitory concentrations (MICs) in laboratory media, AZM had a 16-fold lower MIC in tissue culture medium with 5% Mueller Hinton broth (MHB) and a 64-fold lower MIC in this tissue culture medium with 20% human serum. AZM also demonstrated increased synergy in combination with synthetic host-defense peptides DJK-5 and IDR-1018 under host-like conditions and in a murine abscess model. To mechanistically study the altered effects of AZM under physiologically relevant conditions, global transcriptional analysis was performed on P. aeruginosa with and without effective concentrations of AZM. This revealed that the arn operon, mediating arabinosaminylation of lipopolysaccharides and related regulatory systems, was down-regulated in host-like media when compared to MHB. Inactivation of genes within the arn operon led to increased susceptibility of P. aeruginosa to AZM and great increases in synergy between AZM and other antimicrobial agents, indicating that dysregulation of the arn operon might explain increased AZM uptake and synergy in host-like media. Furthermore, genes involved in central and energy metabolism and ribosome biogenesis were dysregulated more in physiologically relevant conditions treated with AZM, likely due to general changes in cell physiology as a result of the increased effectiveness of AZM in these conditions. These data suggest that, in addition to the arn operon, there are multiple factors in host-like environments that are responsible for observed changes in susceptibility.
Infections caused by drug-resistant Gram-negative bacilli are a severe global health threat, limiting effective drug choices for treatment. In this study, polymyxin analogs designed to have reduced nephrotoxicity, direct activity, and potentiating activity were assessed for inhibition and outer membrane interaction kinetics against wild-type (WT) and polymyxin or multidrug-resistant (MDR) Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae. In MIC assays, two polymyxin B (PMB) analogs (SPR1205 and SPR206) and a polymyxin E analog (SPR946), with shortened peptide side chains and branched aminobutyryl N termini, exhibited promising activity compared with PMB and previously tested control polymyxin analogs SPR741 and polymyxin B nonapeptide (PMBN). Using dansyl-polymyxin (DPX) binding to assess the affinity of interaction with lipopolysaccharide (LPS), purified or in the context of intact cells, SPR206 exhibited similar affinities to PMB but higher affinities than the other SPR analogs. Outer membrane permeabilization measured by the 1-N-phenyl-napthylamine (NPN) assay did not differ significantly between the polymyxin analogs. Moreover, Hill numbers were greater than 1 for most of the compounds tested on E. coli and P. aeruginosa strains which indicates that the disruption of the outer membrane by one molecule of compound cooperatively enhances the subsequent interactions of other molecules against WT and MDR strains. The high activity demonstrated by SPR206 as well as its ability to displace LPS and permeabilize the outer membrane of multiple strains of Gram-negative bacilli while showing cooperative potential with other membrane disrupting compounds supports further research with this polymyxin analog.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.