The lack of accurate distribution maps and reliable abundance estimates for marine species can limit the ability of managers to design scale-appropriate management measures for a stock or population. Here, we tested the utility of aerial photogrammetry for conducting large-scale surveys of nesting marine turtles at remote locations, with a focus on the flatback turtle (Natator depressus) in the Pilbara region of Western Australia. Aerial surveys were conducted between 29 November and 6 December 2016 to overlap with the peak nesting season for flatback turtles and collected imagery was used to examine marine turtle distribution, abundance, and cumulative exposure to industrial activity relative to overlap with protected areas. Two observers independently reviewed aerial georeferenced photographs of 644 beaches and recorded turtle tracks and other evidence of turtle nesting activity. A total of 375 beaches showed signs of nesting activity by either flatback, green (Chelonia mydas) or hawksbill (Eretmochelys imbricata) turtles. Most of these beaches (85.3%) were located on islands, and the rest (14.7%) on the mainland. Half (n = 174) of the active beaches showed evidence of fresh (0–36 h. old) flatback nesting activity, with track abundance varying from 1.0 to 222.0 tracks.night−1. Six rookeries accounted for 62% of the Pilbara flatback stock. Remarkably, 77% of identified flatback rookeries occurred within protected areas. However, one-third (34%) of those were also located within 5 km of a major industrial site, including eight of the highest abundance beaches (50–250 tracks.night−1). Several key rookeries were also identified as being relatively unexposed to industry-related pressures but currently unprotected, highlighting the need for a cumulative impact assessment to be completed for this flatback stock. Finally, our aerial tallies and multiple ground-survey flatback track tallies were highly correlated and together with low intra- and inter-observer errors suggested that reliable data can be collected via aerial photogrammetry for nesting marine turtles. Such large-scale digitized surveys can therefore be used to assess the cumulative exposure of marine turtles to pressures, and to reveal new conservation opportunities.
Monitoring wildlife populations over scales relevant to management is critical to supporting conservation decision-making in the face of data deficiency, particularly for rare species occurring across large geographic ranges. The Pilbara region of Western Australia is home to two sympatric and morphologically similar species of coastal dolphins—the Indo-pacific bottlenose dolphin (Tursiops aduncus) and Australian humpback dolphin (Sousa sahulensis)—both of which are believed to be declining in numbers and facing increasing pressures from the combined impacts of environmental change and extensive industrial activities. The aim of this study was to develop spatially explicit models of bottlenose and humpback dolphin abundance in Pilbara waters that could inform decisions about coastal development at a regional scale. Aerial line transect surveys were flown from a fixed-wing aircraft in the austral winters of 2015, 2016, and 2017 across a total area of 33,420 km2. Spatio-temporal patterns in dolphin density were quantified using a density surface modeling (DSM) approach, accounting for imperfect detection as well as both perception and availability bias. We estimated the abundance of bottlenose dolphins at 3,713 (95% CI = 2,679–5,146; average density of 0.189 ± 0.046 SD individuals per km2) in 2015, 2,638 (95% CI = 1,670–4,168; 0.159 ± 0.135 individuals per km2) in 2016 and 1,635 (95% CI = 1,031–2,593; 0.101 ± 0.103 individuals per km2) in 2017. Too few humpback dolphins were detected in 2015 to model abundance, but their estimated abundance was 1,546 (95% CI = 942–2,537; 0.097 ± 0.03 individuals per km2) and 2,690 (95% CI = 1,792–4,038; 0.169 ± 0.064 individuals per km2) in 2016 and 2017, respectively. Dolphin densities were greatest in nearshore waters, with hotspots in Exmouth Gulf, the Dampier Archipelago, and Great Sandy Islands. Our results provide a benchmark on which future risk assessments can be based to better understand the overlap between pressures and important dolphin habitats in tropical northwestern Australia.
A group of African and Caribbean people decided to tell mental health workers and others in east London about their struggles to achieve mental health. They wanted to show that black people with mental health problems are individuals, with different histories and different talents. They wanted to show that it is possible for African and Caribbean service users to rebuild their lives after a mental health crisis and even after years in and out of hospital. In this article, Zhenreenah Muhxinga describes how they produced a book of stories to challenge the familiar assumption that recovery is not an option for black people.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.