Interactions between microtubules and actin are a basic phenomenon that underlies many fundamental processes in which dynamic cellular asymmetries need to be established and maintained. These are processes as diverse as cell motility, neuronal pathfinding, cellular wound healing, cell division and cortical flow. Microtubules and actin exhibit two mechanistic classes of interactions--regulatory and structural. These interactions comprise at least three conserved 'mechanochemical activity modules' that perform similar roles in these diverse cell functions.
We conclude the following: actomyosin purse strings can close single-cell wounds; myosin-II is recruited to wound borders independently of F-actin; purse-string assembly is dependent on a Rho GTPase; and purse-string assembly and closure are controlled by microtubules. More generally, the results indicate that actomyosin purse strings have been co-opted through evolution to dispatch a broad variety of single-cell and multicellular processes, including wound healing, cytokinesis and morphogenesis.
Xenopus oocytes assemble an array of F-actin and myosin 2 around plasma membrane wounds. We analyzed this process in living oocytes using confocal time-lapse (four-dimensional) microscopy. Closure of wounds requires assembly and contraction of a classic “contractile ring” composed of F-actin and myosin 2. However, this ring works in concert with a 5–10-μm wide “zone” of localized actin and myosin 2 assembly. The zone forms before the ring and can be uncoupled from the ring by inhibition of cortical flow and contractility. However, contractility and the contractile ring are required for the stability and forward movement of the zone, as revealed by changes in zone dynamics after disruption of contractility and flow, or experimentally induced breakage of the contractile ring. We conclude that wound-induced contractile arrays are provided with their characteristic flexibility, speed, and strength by the combined input of two distinct components: a highly dynamic zone in which myosin 2 and actin preferentially assemble, and a stable contractile actomyosin ring.
Cytokinesis is a sequential process that occurs in three phases: assembly of the cytokinetic apparatus, furrow progression and fission (abscission) of the newly formed daughter cells. The ingression of the cleavage furrow is dependent on the constriction of an equatorial actomyosin ring in many cell types. Recent studies have demonstrated that this structure is highly dynamic and undergoes active polymerization and depolymerization throughout the furrowing process. Despite much progress in the identification of contractile ring components, little is known regarding the mechanism of its assembly and structural rearrangements. PIP2 (phosphatidylinositol 4,5-bisphosphate) is a critical regulator of actin dynamics and plays an essential role in cell motility and adhesion. Recent studies have indicated that an elevation of PIP2 at the cleavage furrow is a critical event for furrow stability. In this review we discuss the role of PIP2-mediated signalling in the structural maintenance of the contractile ring and furrow progression. In addition, we address the role of other phosphoinositides, PI(4)P (phosphatidylinositol 4-phosphate) and PIP3 (phosphatidylinositol 3,4,5-triphosphate) in these processes.Overview: regulation of the actin cytoskeleton by PIPKs (phosphatidylinositol phosphate kinases) and PIP2 (phosphatidylinositol 4,5-bisphosphate) PIP2 is generated by the activity of type I (PIPKIs) or type II (PIPKII) kinase isoforms (α, β, γ) which utilize PI(4)P (phosphatidylinositol 4-phosphate) and PI(5)P (phosphatidylinositol 5-phosphate) as substrates respectively. PIPKIs are localized to the plasma membrane and are thought to account for the majority of PIP2 synthesis, whereas PIPKIIs
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.