Abstract. This paper describes the recommended solar forcing dataset for CMIP6 and highlights changes with respect to CMIP5. The solar forcing is provided for radiative properties, namely total solar irradiance (TSI), solar spectral irradiance (SSI), and the F10.7 index as well as particle forcing, including geomagnetic indices Ap and Kp, and ionization rates to account for effects of solar protons, electrons, and galactic cosmic rays. This is the first time that a recommendation for solar-driven particle forcing has been provided for a CMIP exercise. The solar forcing datasets are provided at daily and monthly resolution separately for the CMIP6 preindustrial control, historical (1850CMIP6 preindustrial control, historical ( -2014, and future (2015-2300) simulations. For the preindustrial control simulation, both constant and time-varying solar forcing components are provided, with the latter including variability on 11-year and shorter timescales but no long-term changes. For the future, we provide a realistic scenario of what solar behavior could be, as well as an additional extreme Maunderminimum-like sensitivity scenario. This paper describes the forcing datasets and also provides detailed recommendations as to their implementation in current climate models.For the historical simulations, the TSI and SSI time series are defined as the average of two solar irradiance models that are adapted to CMIP6 needs: an empirical onePublished by Copernicus Publications on behalf of the European Geosciences Union. A new and lower TSI value is recommended: the contemporary solar-cycle average is now 1361.0 W m −2 . The slight negative trend in TSI over the three most recent solar cycles in the CMIP6 dataset leads to only a small global radiative forcing of −0.04 W m −2 . In the 200-400 nm wavelength range, which is important for ozone photochemistry, the CMIP6 solar forcing dataset shows a larger solar-cycle variability contribution to TSI than in CMIP5 (50 % compared to 35 %).We compare the climatic effects of the CMIP6 solar forcing dataset to its CMIP5 predecessor by using timeslice experiments of two chemistry-climate models and a reference radiative transfer model. The differences in the long-term mean SSI in the CMIP6 dataset, compared to CMIP5, impact on climatological stratospheric conditions (lower shortwave heating rates of −0.35 K day −1 at the stratopause), cooler stratospheric temperatures (−1.5 K in the upper stratosphere), lower ozone abundances in the lower stratosphere (−3 %), and higher ozone abundances (+1.5 % in the upper stratosphere and lower mesosphere). Between the maximum and minimum phases of the 11-year solar cycle, there is an increase in shortwave heating rates (+0.2 K day −1 at the stratopause), temperatures (∼ 1 K at the stratopause), and ozone (+2.5 % in the upper stratosphere) in the tropical upper stratosphere using the CMIP6 forcing dataset. This solar-cycle response is slightly larger, but not statistically significantly different from that for the CMIP5 forcing dataset.CMIP6 models wi...
[1] The coupling of the Van Allen radiation belts to the Earth's atmosphere through precipitating particles is an area of intense scientific interest. Currently, there are significant uncertainties surrounding the precipitating characteristics of medium energy electrons (>20 keV), and even more uncertainties for relativistic electrons. In this paper we examine roughly 10 years of measurements of trapped and precipitating electrons available from the Polar Orbiting Environmental Satellites (POES)/Space Environment Monitor (SEM-2), which has provided long-term global data in this energy range. We show that the POES SEM-2 detectors suffer from some contamination issues that complicate the understanding of the measurements, but that the observations provide insight into the precipitation of energetic electrons from the radiation belts, and may be developed into a useful climatology for medium energy electrons. Electron contamination also allows POES/SEM-2 to provide unintended observations of >700 keV relativistic electrons. Finally, there is an energy-dependent time delay observed in the POES/SEM-2 observations, with the relativistic electron enhancement (electrons >800 keV) delayed by approximately one week relative to the >30 keV electron enhancement, probably due to the timescales of the acceleration processes. Observations of trapped relativistic electron fluxes near the geomagnetic equator by GOES show similar delays, indicating a "coherency" to the radiation belts at high and low orbits, and also a strong link between trapped and precipitating particle fluxes. Such large delays should have consequences for the timing of the atmospheric impact of geomagnetic storms.Citation: Rodger, C. J., M. A. Clilverd, J. C. Green, and M. M. Lam (2010), Use of POES SEM-2 observations to examine radiation belt dynamics and energetic electron precipitation into the atmosphere,
Abstract. An experimental Very Low Frequency (VLF) World-Wide Lightning Location Network (WWLLN) has been developed through collaborations with research institutions across the world, providing global real-time locations of lightning discharges. As of April 2006, the network included 25 stations providing coverage for much of the Earth. In this paper we examine the detection efficiency of the WWLLN by comparing the locations from this network with lightning location data purchased from a commercial lightning location network operating in New Zealand. Our analysis confirms that WWLLN favours high peak current return stroke lightning discharges, and that discharges with larger currents are observed by more stations across the global network. We then construct a first principles detection efficiency model to describe the WWLLN, combining calibration information for each station with theoretical modelling to describe the expected amplitudes of the VLF sferics observed by the network. This detection efficiency model allows the prediction of the global variation in WWLLN lightning detection, and an estimate of the minimum CG return stroke peak current required to trigger the network. There are strong spatial variations across the globe, primarily due to station density and sensitivity.The WWLLN is currently best suited to study the occurrence and impacts of high peak-current lightning. For example, in 2005 about 12% of the global elve-producing lightning will have been located by the network. Since the lightning-EMP which produce elves has a high mean rate (210 per minute) it has the potential to significantly influence the ionosphere on regional scales.
Pulsating auroras show quasi-periodic intensity modulations caused by the precipitation of energetic electrons of the order of tens of keV. It is expected theoretically that not only these electrons but also subrelativistic/relativistic electrons precipitate simultaneously into the ionosphere owing to whistler mode wave-particle interactions. The height-resolved electron density profile was observed with the European Incoherent Scatter (EISCAT) Tromsø VHF radar on 17 November 2012. Electron density enhancements were clearly identified at altitudes >68 km in association with the pulsating aurora, suggesting precipitation of electrons with a broadband energy range from~10 keV up to at least 200 keV. The riometer and network of subionospheric radio wave observations also showed the energetic electron precipitations during this period. During this period, the footprint of the Van Allen Probe-A satellite was very close to Tromsø and the satellite observed rising tone emissions of the lower band chorus (LBC) waves near the equatorial plane. Considering the observed LBC waves and electrons, we conducted a computer simulation of the wave-particle interactions. This showed simultaneous precipitation of electrons at both tens of keV and a few hundred keV, which is consistent with the energy spectrum estimated by the inversion method using the EISCAT observations. This result revealed that electrons with a wide energy range simultaneously precipitate into the ionosphere in association with the pulsating aurora, providing the evidence that pulsating auroras are caused by whistler chorus waves. We suggest that scattering by propagating whistler simultaneously causes both the precipitations of subrelativistic electrons and the pulsating aurora.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.