Abstract. An experimental Very Low Frequency (VLF) World-Wide Lightning Location Network (WWLLN) has been developed through collaborations with research institutions across the world, providing global real-time locations of lightning discharges. As of April 2006, the network included 25 stations providing coverage for much of the Earth. In this paper we examine the detection efficiency of the WWLLN by comparing the locations from this network with lightning location data purchased from a commercial lightning location network operating in New Zealand. Our analysis confirms that WWLLN favours high peak current return stroke lightning discharges, and that discharges with larger currents are observed by more stations across the global network. We then construct a first principles detection efficiency model to describe the WWLLN, combining calibration information for each station with theoretical modelling to describe the expected amplitudes of the VLF sferics observed by the network. This detection efficiency model allows the prediction of the global variation in WWLLN lightning detection, and an estimate of the minimum CG return stroke peak current required to trigger the network. There are strong spatial variations across the globe, primarily due to station density and sensitivity.The WWLLN is currently best suited to study the occurrence and impacts of high peak-current lightning. For example, in 2005 about 12% of the global elve-producing lightning will have been located by the network. Since the lightning-EMP which produce elves has a high mean rate (210 per minute) it has the potential to significantly influence the ionosphere on regional scales.
[1] Using the detected energy per strokes of the World Wide Lightning Location Network (WWLLN) we calculate the relative detection efficiency for the network as if it had a uniform detection efficiency. The model uses the energy statistics of located strokes to determine which stations are sensitive to what stroke energies. We are then able to estimate the number of strokes that may be missing from any given regions as compared to the best, most sensitive regions of the WWLLN network. Stroke density maps can be corrected with the knowledge of how sensitive various regions of the network are operating. This new model for the relative WWLLN detection efficiency compensates for the uneven global coverage of the network sensors as well as variations in very low frequency (VLF) propagation. The model gives a way to represent the global distribution of strokes as if observed by a globally uniform network. The model results are analyzed in spatial and temporal regimes, and the effects of a single VLF detector going offline are investigated in areas of sparse and dense detector coverage. The results are also used to show spatial, temporal and energy distributions as seen by the detection efficiency corrected WWLLN.
The World Wide Lightning Location Network (WWLLN) is a long-range network capable of locating lightning strokes in space and time. While able to locate lightning to within a few kilometers and tens of microseconds, the network currently does not measure any characteristics of the strokes themselves. The capabilities of the network are expanded to allow for measurements of the far-field power from the root-mean-square electric field of the detected strokes in the 6–18-kHz band. This is accomplished by calibrating the network from a single well-calibrated station using a bootstrapping method. With this technique the global median stroke power seen by the network is 1.0 × 106 W, with an average uncertainty of 17%. The results are validated through comparison to the return-stroke peak current as measured by the New Zealand Lightning Detection Network and to the previous ground wave power measurements in the literature. The global median stroke power herein is found to be four orders of magnitude lower than that reported earlier for the measurements, including the nearby ground and sky wave. However, it is found that the far-field waveguide mode observations herein are consistent with the previous literature because of differences in observational techniques and the efficiency of coupling into a propagation wave in the Earth–ionosphere waveguide. This study demonstrates that the WWLLN-determined powers can be used to estimate the return-stroke peak currents of individual lightning strokes occurring throughout the globe.
We use World Wide Lightning Location Network (WWLLN) data on the radiated radio frequency electromagnetic energy per stroke to identify the upper tip of the global lightning stroke energy distribution. The mean stroke energy is about 1,000 J per stroke in the very low frequency band between 5 and 18 kHz, while the distribution used in this paper is limited to strokes in that band above 1 MJ, about 3 orders of magnitude above the mean. It is shown that these energies are representative of the tip of the optical distribution, first identified by Turman (1977) above 10 GW per stroke, which he termed "superbolts." The distribution peaks globally in the Northern Hemisphere winter (November-February) with most superbolts being found in the North Atlantic west of Europe, the winter Mediterranean Sea, and a strong local maximum over the Andes in South America. We identify regions with somewhat fewer superbolts in the North Pacific east of Japan in winter, along the equator of the Atlantic and Indian Oceans and south of South Africa. We find very few superbolts during April-October each year. While superbolts are scattered around the globe, the local occurrence peaks do not coincide with the usual three main lightning "chimneys." Unlike the distribution of all normal global lightning, we find superbolts predominantly over the oceans and seas, with fewer over the continents, just the opposite of all global lightning. Key Points:• Superbolts, have more than 10 6 J of radiated VLF energy, which is comparable or larger than Turman'ssuperbolts with >10 GW optical power • Superbolts dominantly occur during Nov-Feb over water with peaks in the N. Atlantic and N. Pacific, the Mediterranean and over the Andes • One-to-one stroke comparisons with the Earth Networks Total Lightning Network show that all superbolts have peak currents over 10 5 A
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.