We monitored the evolution in time of pinhole-free structures based on FTO/TiO/CHNHPbICl layers, with and without spiro-OMeTAD and counter electrodes (Ag, Mo/Ag, and Au), aged at 24 °C in a dark nitrogen atmosphere. In the absence of electrodes, no degradation occurs. While devices with Au show only a 10% drop in power conversion efficiency, remaining stable after a further overheating at 70 °C, >90% is lost when using Ag, with the process being slower for Mo/Ag. We demonstrate that iodine is dislocated by the electric field between the electrodes, and this is an intrinsic cause for electromigration of I from the perovskite until it reaches the anode. The iodine exhaustion in the perovskite layer is produced when using Ag electrodes, and AgI is formed. We hypothesize that in the presence of Au the iodine migration is limited due to the buildup of I negative space charge accumulated at the perovskite-OMeTAD interface.
Hysteretic effects are investigated in perovskite solar cells in the standard FTO/TiO2/CH3NH3PbI3−xClx/spiro-OMeTAD/Au configuration.We report normal (NH) and inverted hysteresis (IH) in the J-V characteristics occurring for the same device structure, the behavior strictly depending on the pre-poling bias. NH typically appears at pre-poling biases larger than the open circuit bias, while pronounced IH occurs for negative bias pre-poling. The transition from NH to IH is marked by a intermediate mixed hysteresis behavior characterized by a crossing point in the J-V characteristics. The measured J-V characteristics are explained quantitatively by the dynamic electrical model (DEM). Furthermore, the influence of the bias scan rate on the NH/IH hysteresis is discussed based on the time evolution of the non-linear polarization. Introducing a three step measurement protocol, which includes stabilization, pre-poling and measurement, we put forward the difficulties and possible solutions for a correct PCE evaluation.
A dynamic electrical model is introduced to investigate the hysteretic
effects in the I-V characteristics of perovskite based solar cells. By making a
simple ansatz for the polarization relaxation, our model is able to reproduce
qualitatively and quantitatively detailed features of measured I-V
characteristics. Pre-poling effects are discussed, pointing out the differences
between initially over- and under-polarized samples. In particular, the
presence of the current over-shoot observed in the reverse characteristics is
correlated with the solar cell pre-conditioning. Furthermore, the dynamic
hysteresis is analyzed with respect to changing the bias scan rate, the
obtained results being consistent with experimentally reported data: the
hysteresis amplitude is maximum at intermediate scan rates, while at very slow
and very fast ones it becomes negligible. The effects induced by different
relaxation time scales are assessed. The proposed dynamic electrical model
offers a comprehensive view of the solar cell operation, being a practical tool
for future calibration of tentative microscopic descriptions.Comment: 8 pages, 6 figures, Supplemental material, to appear in Solar Energy
Materials & Solar Cell
The dynamic effects observed in the J-V measurements represent one important hallmark in the behavior of the perovskite solar cells. Proper measurement protocols (MPs) should be employed for the experimental data reproducibility, in particular for a reliable evaluation of the power conversion efficiency (PCE), as well as for a meaningful characterization of the type and magnitude of the hysteresis. We discuss here several MPs by comparing the experimental J-V characteristics with simulated ones using the dynamic electrical model (DEM). Pre-poling conditions and bias scan rate can have a dramatic influence not only on the apparent solar cell performance, but also on the hysteretic phenomena. Under certain measurement conditions, a hysteresis-free behavior with relatively high PCEs may be observed, although the J-V characteristics may be far away from the stationary case. Furthermore, forward-reverse and reverse-forward bias scans show qualitatively different behaviors regarding the type of the hysteresis, normal and inverted, depending on the bias pre-poling. We emphasize here that correlated double-scans, forward-reverse or reverseforward, where the second scan is conducted in the opposite sweep direction and begins immediately after the first scan is complete, are essential for a correct assessment of the dynamic hysteresis. In this context, we define a hysteresis index which consistently assigns the hysteresis type and magnitude. Our DEM simulations, supported by experimental data, provide further guidance for an efficient and accurate determination of the stationary J-V characteristics, showing that the type and magnitude of the dynamic hysteresis may be affected by unintentional pre-conditioning in typical experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.