The inclusion of magnetic nanoparticles (MNP) in a hydrogel matrix to produce magnetic hydrogels has broadened the scope of these materials in biomedical research. Embedded MNP offer the possibility to modulate the physical properties of the hydrogel remotely and on demand by applying an external magnetic field. Moreover, they enable permanent changes in the mechanical properties of the hydrogel, as well as alterations in the micro- and macroporosity of its three-dimensional (3D) structure, with the associated potential to induce anisotropy. In this work, the behavior of biocompatible and biodegradable hydrogels made with Fmoc-diphenylalanine (Fmoc-FF) (Fmoc = fluorenylmethoxycarbonyl) and Fmoc–arginine–glycine–aspartic acid (Fmoc-RGD) short peptides to which MNP were incorporated was studied in detail with physicochemical, mechanical, and biological methods. The resulting hybrid hydrogels showed enhance mechanical properties and withstood injection without phase disruption. In mice, the hydrogels showed faster and improved self-healing properties compared to their nonmagnetic counterparts. Thanks to these superior physical properties and stability during culture, they can be used as 3D scaffolds for cell growth. Additionally, magnetic short-peptide hydrogels showed good biocompatibility and the absence of toxicity, which together with their enhanced mechanical stability and excellent injectability make them ideal biomaterials for in vivo biomedical applications with minimally invasive surgery. This study presents a new approach to improving the physical and mechanical properties of supramolecular hydrogels by incorporating MNP, which confer structural reinforcement and stability, remote actuation by magnetic fields, and better injectability. Our approach is a potential catalyst for expanding the biomedical applications of supramolecular short-peptide hydrogels.
Advances in skin tissue engineering have promoted the development of artificial skin substitutes to treat large burns and other major skin loss conditions. However, one of the main drawbacks to bioengineered skin is the need to obtain a large amount of viable epithelial cells in short periods of time, making the skin biofabrication process challenging and slow. Enhancing skin epithelial cell cultures by using mesenchymal stem cells secretome can favor the scalability of manufacturing processes for bioengineered skin. The effects of three different types of secretome derived from human mesenchymal stem cells, e.g. hADSC-s (adipose cells), hDPSC-s (dental pulp) and hWJSC-s (umbilical cord), were evaluated on cultured skin epithelial cells during 24, 48, 72 and 120 h to determine the potential of this product to enhance cell proliferation and improve biofabrication strategies for tissue engineering. Then, secretomes were applied in vivo in preliminary analyses carried out on Wistar rats. Results showed that the use of secretomes derived from mesenchymal stem cells enhanced currently available cell culture protocols. Secretome was associated with increased viability, proliferation and migration of human skin epithelial cells, with hDPSC-s and hWJSC-s yielding greater inductive effects than hADSC-s. Animals treated with hWJSC-s and especially, hDPSC-s tended to show enhanced wound healing in vivo with no detectable side effects. Mesenchymal stem cells derived secretomes could be considered as a promising approach to cell-free therapy able to improve skin wound healing and regeneration.
Recent advances in tissue engineering offer innovative clinical alternatives in dentistry and regenerative medicine. Tissue engineering combines human cells with compatible biomaterials to induce tissue regeneration. Shortening the fabrication time of biomaterials used in tissue engineering will contribute to treatment improvement, and biomaterial functionalization can be exploited to enhance scaffold properties. In this work, we have tested an alternative biofabrication method by directly including human oral mucosa tissue explants within the biomaterial for the generation of human bioengineered mouth and dental tissues for use in tissue engineering. To achieve this, acellular fibrin–agarose scaffolds (AFAS), non-functionalized fibrin-agarose oral mucosa stroma substitutes (n-FAOM), and novel functionalized fibrin-agarose oral mucosa stroma substitutes (F-FAOM) were developed and analyzed after 1, 2, and 3 weeks of in vitro development to determine extracellular matrix components as compared to native oral mucosa controls by using histochemistry and immunohistochemistry. Results demonstrate that functionalization speeds up the biofabrication method and contributes to improve the biomimetic characteristics of the scaffold in terms of extracellular matrix components and reduce the time required for in vitro tissue development.
The embryonic development of the human umbilical cord (hUC) is complex, and different regions can be identified in this structure. The aim of this work is to characterize the hUC at in situ and ex vivo levels to stablish their potential use in vascular regeneration. Human umbilical cords were obtained and histologically prepared for in the situ analysis of four hUC regions (intervascular—IV, perivascular—PV, subaminoblastic—SAM, and Wharton’s jelly—WH), and primary cell cultures of mesenchymal stem cells (hUC-MSC) isolated from each region were obtained. The results confirmed the heterogeneity of the hUC, with the IV and PV zones tending to show the higher in situ expression of several components of the extracellular matrix (collagens, proteoglycans, and glycosaminoglycans), vimentin, and MSC markers (especially CD73), although isolation and ex vivo culture resulted in a homogeneous cell profile. Three vascular markers were positive in situ, especially vWF, followed by CD34 and CD31, and isolation and culture revealed that the region associated with the highest expression of vascular markers was IV, followed by PV. These results confirm the heterogeneity of the hUC and the need for selecting cells from specific regions of the hUC for particular applications in tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.