General Video Game Playing (GVGP) algorithms are usually focused on winning and maximizing score but combining different objectives could turn out to be a solution that has not been deeply investigated yet. This paper presents the results obtained when five GVGP agents play a set of games using heuristics with different objectives: maximizing winning, maximizing exploration, maximizing the discovery of the different elements presented in the game (and interactions with them) and maximizing the acquisition of knowledge in order to accurately estimate the outcome of each possible interaction. The results show that the performance of the agents changes depending on the heuristic used. So making use of several agents with different goals (and their pertinent heuristics) could be a feasible approach to follow in GVGP, allowing different behaviors in response to the diverse situations presented in the games.
Designing agents that are able to achieve different play-styles while maintaining a competitive level of play is a difficult task, especially for games for which the research community has not found super-human performance yet, like strategy games. These require the AI to deal with large action spaces, long-term planning and partial observability, among other well-known factors that make decision-making a hard problem. On top of this, achieving distinct play-styles using a general algorithm without reducing playing strength is not trivial. In this paper, we propose Portfolio Monte Carlo Tree Search with Progressive Unpruning for playing a turn-based strategy game (Tribes) and show how it can be parameterized so a qualitydiversity algorithm (MAP-Elites) is used to achieve different playstyles while keeping a competitive level of play. Our results show that this algorithm is capable of achieving these goals even for an extensive collection of game levels beyond those used for training.
Ensemble Decision Systems offer a unique form of decision making that allows a collection of algorithms to reason together about a problem. Each individual algorithm has its own inherent strengths and weaknesses, and often it is difficult to overcome the weaknesses, while retaining the strengths. Instead of altering the properties of the algorithm, the Ensemble Decision System augments the performance with other algorithms that have complementing strengths. This work outlines different options for building an Ensemble Decision System as well as providing analysis on its performance compared to the individual components of the system with interesting results, showing an increase in the generality of the algorithms without significantly impeding performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.