Ferrocenyl, diferrocenyl, and triferrocenyl complexes of dihydro-1H-trindene have been prepared by up to 3-fold bromide substitution of the dihydro-2,5,8-tribromo-1H-trindene halocarbon. The charge transfer properties of their mono-, di-, and tricationic derivatives were investigated. The cations of this new family of multi(ferrocenyl)trindene complexes were generated by chemical oxidation using (acetylferrocenium)(BF4) as the oxidative agent and monitored in the visible, IR and near-IR regions. The charge transfer bands in the near-IR spectra are rationalized in the framework of the Marcus–Hush theory. In particular, the triferrocenyl complexes display a redox chemistry that can be switched from a unresolved three-electron oxidation to two consecutive one-electron and two near simultaneously occurring one-electron oxidations by changing the supporting electrolyte from [nBu4N][PF6] to [nBu4][B(C6F5)4]. In addition, the introduction of the third ferrocenyl group increases the strength of the metal–metal interaction with respect to that of the structurally related diferrocenyl system
The new complexes (2-ferrocenyl)cyclopenta[l]-phenanthrene and (2-ferrocenyl)(eta(5)-cyclopenta[l]phenanthrenyl)FeCp have been prepared and the charge transfer properties of their monocationic derivatives investigated. The cations were generated by chemical oxidation using ferrocenium(BF4) or acetylferrocenium(BF4) as the oxidative agent and monitored in the visible, IR, and near-IR regions. The electrochemistry of the two complexes and, for comparison, of the previously reported (eta(5)-cyclopenta[l]phenanthrenyl)FeCp was analyzed. The charge transfer bands in the near-IR spectral region of the monocations are rationalized in the framework of Marcus-Hush theory. In particular, the monometallic (2-ferrocenyl)cyclopenta[l]phenanthrene displays a single oxidation wave at a potential very close to that of (eta(5)-cyclopenta[l]phenanthrenyl)FeCp and its monocations exhibits a ligand-to-metal charge transfer band in the visnear-IR region. The unsymmetrical diiron species (2-ferrocenyl)(eta(5)-cyclopenta[l]phenanthrenyl)FeCp undergoes two consecutive and well-resolved one-electron oxidations producing, at the first oxidation step, a mixed-valence monocation which displays an intervalence charge transfer band in the vis-near-IR region
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.