Tomato seeds were inoculated with the plant growth-promoting rhizobacteria Azospirillum brasilense FT326, and changes in parameters associated with plant growth were evaluated 15 days after inoculation. Azospirilla were localized on roots and within xylematic tissue. An increase in shoot and root fresh weight, main root hair length, and root surface indicated that inoculation with A. brasilense FT 326 resulted in plant growth improvement. The levels of indole-3-acetic acid (IAA) and ethylene, two of the phytohormones related to plant growth, were higher in inoculated plants. Exogenously supplied ethylene mimicked the effect of inoculation, and the addition of an inhibitor of its synthesis or of its physiological activity completely blocked A. brasilense growth promotion. Based on our results, we propose that the process of growth promotion triggered by A. brasilense inoculation involves a signaling pathway that has ethylene as a central, positive regulator.
This study aims at comparing biogeochemical processes in a Vallisneria spiralis meadow and in unvegetated sediments in the upper reach of the Mincio River (Northern Italy
The spread of invasive aquatic plants (i.e., aquatic weeds) requires a broader knowledge of the factors determining their settlement at the lake scale, in order to improve management practices and biomonitoring. Among hydrodynamic pressures, wave action might influence submerged vegetation distribution in shallow lakes and potentially engender modifications of plant morphological traits. We here report a field survey conducted between 2014 and 2015 in French Atlantic Lakes to assess the spatial distribution and biomass production of two rooted aquatic weeds, Egeria densa Planch. and Lagarosiphon major (Ridl.) Moss, in relation to wind-induced sediment resuspension, water depth and sedimentary features. Moreover, we explored the relation between plant morphological traits and hydrodynamic disturbance under in situ conditions. At the lake scale, E. densa and L. major formed extensive monospecific stands, and occurred in the same areas only at low biomass. Both monospecific and mixed stands preferentially developed in shallow-sheltered or deep-exposed areas. Plant morphological traits showed different patterns in function of sediment resuspension according to the species and the lake. The influence of resuspension was however not systematic, with many cases where morphological traits were not affected at all. Maximum stem length appeared to be the most correlated trait towards sediment resuspension. Moreover, we found a significant correlation between the biomass and the sedimentary organic matter, indicating an interaction between the organic substrate preference of the plants and the effect of the canopy on fine particles sedimentation. On the whole, we highlighted the link between plant distribution, phenotypic plasticity and sediment resuspension, with calm-water zones favouring the settlement of dense vegetated stands. Our study could thus contribute to improve prediction models for identifying suitable areas for potential colonization by aquatic weeds. Further research is needed to better understand the role played by hydraulic forces in structuring the habitats in shallow lakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.