We have examined the effects of Obstructive Sleep Apnea (OSA) on red blood cell (RBC) proteome variation at evening/morning day time to uncover new insights into OSA-induced RBC dysfunction that may lead to OSA manifestations. Dysregulated proteins mainly fall in the group of catalytic enzymes, stress response and redox regulators such as peroxiredoxin 2 (PRDX2). Validation assays confirmed that atmorning the monomeric/dimeric forms of PRDX2 were more overoxidized in OSA RBC compared to evening samples. Six month of positive airway pressure (PAP) treatment decreased this overoxidation and generated multimeric overoxidized forms associated with chaperone/transduction signaling activity of PRDX2. Morning levels of overoxidized PRDX2 correlated with polysomnographic (PSG)-arousal index and metabolic parameters whereas the evening level of disulfide-linked dimer (associated with peroxidase activity of PRDX2) correlated with PSG parameters. After treatment, morning overoxidized multimer of PRDX2 negatively correlated with fasting glucose and dopamine levels. Overall, these data point toward severe oxidative stress and altered antioxidant homeostasis in OSA RBC occurring mainly at morning time but with consequences till evening. The beneficial effect of PAP involves modulation of the redox/oligomeric state of PRDX2, whose mechanism and associated chaperone/transduction signaling functions deserves further investigation. RBC PRDX2 is a promising candidate biomarker for OSA severity and treatment monitoring, warranting further investigation and validation.
This article presents proteomics data referenced in [1] Using proteomics-based evaluation of red blood cells (RBCs), we have identified differentially abundant proteins associated with Obstructive Sleep Apnea Syndrome (OSA). RBCs were collected from peripheral blood of patients with moderate/severe OSA or snoring at pre- (evening) and post-night (morning) polysomnography, so that proteome variations between these time points could be assessed. RBC cytoplasmic fraction depleted of hemoglobin, using Hemovoid™ system, were analyzed by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE), the 2D image software-based analyzed and relevant differentially abundant proteins identified by mass spectrometry (MS). MS identified 31 protein spots differentially abundant corresponding to 21 unique proteins possibly due to the existence of post-translational modification regulations. Functional analysis by bioinformatics tools indicated that most proteins are associated with catalytic, oxidoreductase, peroxidase, hydrolase, ATPase and anti-oxidant activity. At morning a larger numbers of differential proteins including response to chemical stimulus, oxidation reduction, regulation of catalytic activity and response to stress were observed in OSA. The data might support further research in OSA biomarker discovery and validation.
In this study, we examined the effect of six months of positive airway pressure (PAP) therapy on Obstructive Sleep Apnea (OSA) red blood cell (RBC) proteome by two dimensional difference gel electrophoresis (2D-DIGE) - based proteomics followed by Western blotting (WB) validation. The discovered dysregulated proteins/proteoforms are associated with cell death, H2O2 catabolic/metabolic process, stress response, and protein oligomerization. Validation by nonreducing WB was performed for peroxiredoxin-2 (PRDX2) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by using antibodies against the sulfinylated/sulfonylated cysteine of these proteins to better evaluate their redox–oligomeric states under OSA and/or in response to PAP therapy. The results indicated that the redox–oligomeric state of GAPDH and PRDX2 involving overoxidation by sulfinic/sulfonic acids were differentially modulated in OSA RBC, which might be compromising RBC homeostasis. PAP therapy by restoring this modulation induced a higher oligomerization of overoxidized GAPDH and PRDX2 in some patients that could be associated with eryptosis and the chaperone “gain” of function, respectively. This varied response following PAP may result from the complex interplay between OSA and OSA metabolic comorbidity. Hence, information on the redox status of PRDX2 and GAPDH in RBC will help to better recognize OSA subtypes and predict the therapeutic response in these patients. GAPDH monomer combined with body mass index (BMI) and PRDX2 S-S dimer combined with homeostatic model assessment for insulin resistance (HOMA-IR) showed to be very promising biomarkers to predict OSA and OSA severity, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.