A current question in the high-order organization of chromatin is whether topologically associating domains (TADs) are distinct from other hierarchical chromatin domains. However, due to the unclear TAD definition in tradition, the structural and functional uniqueness of TAD is not well studied. In this work, we refined TAD definition by further constraining TADs to the optimal separation on global intra-chromosomal interactions. Inspired by this constraint, we developed a novel method, called HiTAD, to detect hierarchical TADs from Hi-C chromatin interactions. HiTAD performs well in domain sensitivity, replicate reproducibility and inter cell-type conservation. With a novel domain-based alignment proposed by us, we defined several types of hierarchical TAD changes which were not systematically studied previously, and subsequently used them to reveal that TADs and sub-TADs differed statistically in correlating chromosomal compartment, replication timing and gene transcription. Finally, our work also has the implication that the refinement of TAD definition could be achieved by only utilizing chromatin interactions, at least in part. HiTAD is freely available online.
In this study, we performed a sequence characterization of the duck melanocortin 1 receptor (alpha-melanocyte stimulating hormone receptor) (MC1R) gene to analyze the relationship between MC1R polymorphism and the extended black variant in domestic ducks based on the extended black (E) and non-extended black (e(+) ) allele hypothesis of the duck MC1R gene. Both c.52G>A and c.376G>A substitutions are highly associated with the duck extended black variant (P < 0.01), but the novel c.52G>A substitution is more of a fit for the allele hypothesis of the duck MC1R gene.
Ammonia oxidation is an important process for global nitrogen cycling. Both ammonia-oxidizing bacteria (AOB) and archaea (AOA) can be the important players in nitrification process. However, their relative contribution to nitrification remains controversial. This study investigated the abundance and community structure of AOA and AOB in sediment of Miyun Reservoir and adjacent soils. Quantitative PCR assays indicated that the highest AOA abundance occurred in unplanted riparian soil, followed by reservoir sediment, reed-planted riparian soil and agricultural soil. The AOB community size in agricultural soil was much larger than that in the other habitats. Large variations in the structures of AOA and AOB were also observed among the different habitats. The abundance of Nitrosospira-like AOB species were detected in the agricultural soil and reservoir sediment. Pearson's correlation analysis showed the AOB diversity had positive significant correlations with pH and total nitrogen, while the AOA diversity might be negatively affected by nitrate nitrogen and ammonia nitrogen. This work could add new insights towards nitrification in aquatic and terrestrial ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.