Graves' disease is a common autoimmune disorder characterized by thyroid stimulating hormone receptor autoantibodies (TRAb) and hyperthyroidism. To investigate the genetic architecture of Graves' disease, we conducted a genome-wide association study in 1,536 individuals with Graves' disease (cases) and 1,516 controls. We further evaluated a group of associated SNPs in a second set of 3,994 cases and 3,510 controls. We confirmed four previously reported loci (in the major histocompatibility complex, TSHR, CTLA4 and FCRL3) and identified two new susceptibility loci (the RNASET2-FGFR1OP-CCR6 region at 6q27 (P(combined) = 6.85 × 10(-10) for rs9355610) and an intergenic region at 4p14 (P(combined) = 1.08 × 10(-13) for rs6832151)). These newly associated SNPs were correlated with the expression levels of RNASET2 at 6q27, of CHRNA9 and of a previously uncharacterized gene at 4p14, respectively. Moreover, we identified strong associations of TSHR and major histocompatibility complex class II variants with persistently TRAb-positive Graves' disease.
Background The great interest in cell-free mRNA, microRNA (miRNA) as molecular biomarkers for clinical applications, and as ‘signaling’ molecules for intercellular communication highlights the need to reveal their physical nature. Here this issue was explored in human cell-free seminal mRNA (cfs-mRNA) and miRNA (cfs-miRNA). Methodology/Principal Findings Selected male reproductive organ-specific mRNAs, miRNAs, and piRNAs were quantified by quantitative real-time PCR in all experiments. While the stability of cfs-miRNA assessed by time-course analysis (up to 24 h at room temperature) was similar with cfs-mRNA, the reductive changes between cfs-miRNA and cfs-mRNA after filtration and Triton X-100 treatment on seminal plasma were very different, implying their different physical nature. Seminal microvesicles (SMVs) were then recovered and proportions of cfs-mRNA and cfs-miRNA within SMVs were quantified. The amounts of SMVs- sequestered cfs-mRNAs almost were the same as total cfs-mRNA, and were highly variable depending on the different sizes of SMVs. But most of cfs-miRNA was independent of SMVs and existed in the supernatant. The possible form of cfs-miRNA in the supernatant was further explored by filtration and protease K digestion. It passed through the 0.10-µm pore, but was degraded dramatically after intense protease K digestion. Conclusions/Significance The predominant cfs-mRNA is contained in SMVs, while most cfs-miRNA is bound with protein complexes. Our data explained the stability of extracellular RNAs in human semen, and shed light on their origins and potential functions in male reproduction, and strategy of developing them as biomarkers of male reproductive system.
ObjectiveCongenital hypothyroidism (CH), the most common neonatal metabolic disorder, is characterized by impaired neurodevelopment. Although several candidate genes have been associated with CH, comprehensive screening of causative genes has been limited.Design and methodsOne hundred ten patients with primary CH were recruited in this study. All exons and exon–intron boundaries of 21 candidate genes for CH were analyzed by next-generation sequencing. And the inheritance pattern of causative genes was analyzed by the study of family pedigrees.ResultsOur results showed that 57 patients (51.82%) carried biallelic mutations (containing compound heterozygous mutations and homozygous mutations) in six genes (DUOX2, DUOXA2, DUOXA1, TG, TPO and TSHR) involved in thyroid hormone synthesis. Autosomal recessive inheritance of CH caused by mutations in DUOX2, DUOXA2, TG and TPO was confirmed by analysis of 22 family pedigrees. Notably, eight mutations in four genes (FOXE1, NKX2-1, PAX8 and HHEX) that lead to thyroid dysgenesis were identified in eight probands. These mutations were heterozygous in all cases and hypothyroidism was not observed in parents of these probands.ConclusionsMost cases of congenital hypothyroidism in China were caused by thyroid dyshormonogenesis rather than thyroid dysgenesis. This study identified previously reported causative genes for 57/110 Chinese patients and revealed DUOX2 was the most frequently mutated gene in these patients. Our study expanded the mutation spectrum of CH in Chinese patients, which was significantly different from Western countries.
Understanding the underlying molecular mechanisms behind ADE of SARS-CoV-2 is critical for development of safe and effective therapies. Here, we report that two neutralizing mAbs, MW01 and MW05, could enhance the infection of SARS-CoV-2 pseudovirus on FcγRIIB-expressing B cells. X-ray crystal structure determination and S trimer-binding modeling showed that MW01 and MW05 could bind to RBDs in S trimer with both “up” and “down” states. While, the neutralizing mAb MW07, which has no ADE activity only binds to RBD in S trimer with “up” state. Monovalent MW01 and MW05 completely diminished the ADE activity compared with their bivalent counterparts. Moreover, both macropinocytosis and endocytosis are confirmed involving in ADE of SARS-CoV-2 pseudoviral infection. Blocking endosome transportation and lysosome acidification could inhibit the ADE activity mediated by MW05. Together, our results identified a novel ADE mechanism of SARS-CoV-2 pseudovirus in vitro, FcγRIIB-mediated uptake of SARS-CoV-2/mAb complex with bivalent interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.