Due to limited treatment options, pre-eclampsia (PE) is associated with fetal perinatal and maternal morbidity and mortality. During the causes of PE, failure of uterine spiral artery remodeling which might be related to functioning abnormally of trophoblast cells, result in the occurrence and progression of PE. Recently, abnormal expression of long non-coding RNAs (lncRNAs), as imperative regulators involved in human diseases progression (included PE), which has been indicated by increasing evidence. In this research, we found that TUG1, a lncRNA, was markedly reduced in placental samples from patients with PE. Loss-function assays indicated that knockdown TUG1 significantly affected cell proliferation, apoptosis, migration and network formation in vitro. RNA-seq revealed that TUG1 could affect abundant genes, and then explore the function and regulatory mechanism of TUG1 in trophoblast cells. Furthermore, RNA immunoprecipitation and chromatin immunoprecipitation assays validated that TUG1 can epigenetically inhibit the level of RND3 through binding to EZH2, thus promoting PE development. Therefore, via illuminating the TUG1 mechanisms underlying PE development and progression, our findings might furnish a prospective therapeutic strategy for PE intervention.
Background The great interest in cell-free mRNA, microRNA (miRNA) as molecular biomarkers for clinical applications, and as ‘signaling’ molecules for intercellular communication highlights the need to reveal their physical nature. Here this issue was explored in human cell-free seminal mRNA (cfs-mRNA) and miRNA (cfs-miRNA). Methodology/Principal Findings Selected male reproductive organ-specific mRNAs, miRNAs, and piRNAs were quantified by quantitative real-time PCR in all experiments. While the stability of cfs-miRNA assessed by time-course analysis (up to 24 h at room temperature) was similar with cfs-mRNA, the reductive changes between cfs-miRNA and cfs-mRNA after filtration and Triton X-100 treatment on seminal plasma were very different, implying their different physical nature. Seminal microvesicles (SMVs) were then recovered and proportions of cfs-mRNA and cfs-miRNA within SMVs were quantified. The amounts of SMVs- sequestered cfs-mRNAs almost were the same as total cfs-mRNA, and were highly variable depending on the different sizes of SMVs. But most of cfs-miRNA was independent of SMVs and existed in the supernatant. The possible form of cfs-miRNA in the supernatant was further explored by filtration and protease K digestion. It passed through the 0.10-µm pore, but was degraded dramatically after intense protease K digestion. Conclusions/Significance The predominant cfs-mRNA is contained in SMVs, while most cfs-miRNA is bound with protein complexes. Our data explained the stability of extracellular RNAs in human semen, and shed light on their origins and potential functions in male reproduction, and strategy of developing them as biomarkers of male reproductive system.
BACKGROUND:We recently detected cell-free seminal RNA (cfsRNA) and set out to study its concentration, integrity, stability in healthy individuals, and mechanisms for its protection from ribonucleases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.