Long-term antibody responses and neutralizing activities in response to SARS-CoV-2 infection are not yet clear. Here we quantify immunoglobulin M (IgM) and G (IgG) antibodies recognizing the SARS-CoV-2 receptor-binding domain (RBD) of the spike (S) or the nucleocapsid (N) protein, and neutralizing antibodies during a period of 6 months from COVID-19 disease onset in 349 symptomatic COVID-19 patients who were among the first be infected world-wide. The positivity rate and magnitude of IgM-S and IgG-N responses increase rapidly. High levels of IgM-S/N and IgG-S/N at 2-3 weeks after disease onset are associated with virus control and IgG-S titers correlate closely with the capacity to neutralize SARS-CoV-2. Although specific IgM-S/N become undetectable 12 weeks after disease onset in most patients, IgG-S/N titers have an intermediate contraction phase, but stabilize at relatively high levels over the 6 month observation period. At late time points, the positivity rates for binding and neutralizing SARS-CoV-2-specific antibodies are still >70%. These data indicate sustained humoral immunity in recovered patients who had symptomatic COVID-19, suggesting prolonged immunity.
The aim of this study was to identify the changes of hematologic and immunological parameters in COVID-19 patients. We collected and analyzed the data of 117 patients who were laboratory confirmed as SARS-CoV-2 infection. The cases were divided into regular group, severe group and critically ill group according to the sixth edition scheme for COVID-19 diagnosis and treatment of China. The laboratory tests included blood routine, cellular and humoral immunity indices, biochemical detections and inflammatory biomarker. Compared with regular patients, severe and critically ill patients had significantly lower lymphocyte count (p < 0.01), decreased red blood cell and hemoglobin (p < 0.01), low levels of immunoglobulin G (p < 0.05) and significantly higher in D-dimer (p < 0.0001), fibrinogen (p < 0.01), white blood cell count (p < 0.01), neutrophil count (p < 0.0001), interleukin-6 (p < 0.05), C-reactive protein (p < 0.01), procalcitonin (p < 0.01), erythrocyte sedimentation rate (p < 0.05), ferritin (p < 0.01) and lactate dehydrogenase (p < 0.0001). The specific immunoglobulin G antibodies to the SARS-CoV-2 in severe and critically ill patients were significantly lower than that in regular patients (p < 0.05). Our findings suggest that the lymphocyte counts, red blood cell counts and the immunoglobulin G antibodies of COVID-19 patients were impaired to varying degrees and the blood was in a state of hypercoagulation, which were more obvious in critically ill patients.
Long-term antibody responses and neutralizing activities following SARS-CoV-2 infections have not yet been elucidated. We quantified immunoglobulin M (IgM) and G (IgG) antibodies recognizing the SARS-CoV-2 receptor-binding domain (RBD) of the spike (S) or the nucleocapsid (N) protein, and neutralizing antibodies during a period of six months following COVID-19 disease onset in 349 symptomatic COVID-19 patients, which were among the first world-wide being infected. The positivity rate and magnitude of IgM-S and IgG-N responses increased rapidly. High levels of IgM-S/N and IgG-S/N at 2-3 weeks after disease onset were associated with virus control and IgG-S titers correlated closely with the capacity to neutralize SARS-CoV-2. While specific IgM-S/N became undetectable 12 weeks after disease onset in most patients, IgG-S/N titers showed an intermediate contraction phase, but stabilized at relatively high levels over the six months observation period. At late time points the positivity rates for binding and neutralizing SARS-CoV-2-specific antibodies was still over 70%. Taken together, our data indicate sustained humoral immunity in recovered patients who suffer from symptomatic COVID-19, suggesting prolonged immunity.
MicroRNAs (miRNAs) are involved in the regulation of a variety of biological processes, such as inflammation. Dysregulation of miRNAs have been implicated in many human disease, including cardiovascular diseases. Polymorphisms in miRNA genes may affect the miRNA biogenesis and function, and thus cause changes in the expression of thousands of genes. The aim of this study was to examine whether miRNA polymorphisms (miR-146a rs2910164, miR-149 rs71428439, miR-196a2 rs11614913, miR-218 rs11134527, and miR-499 rs3746444) contribute to the risk for the development of myocardial infarction (MI). Five miRNA polymorphisms were genotyped in a total of 1808 subjects composed of 919 MI patients and 889 control individuals. The GG genotype of rs3746444 was found to be associated with a significantly increased risk of MI (recessive model, adjusted OR = 1.710, 95% CI: 1.058-2.763, P = 0.029). Although the CC genotype of rs2910164 significantly increased the risk of MI under dominant and additive models (P < 0.05), this difference disappeared after adjustment for age, sex, blood pressure, triglycerides, total cholesterol, HDL, LDL and diabetes. In addition, when rs3746444 and rs2910164 were evaluated together by the number of putative high-risk alleles, we found an increased risk of MI for subjects carrying 3-4 risk alleles (3-4 risk alleles vs. 0-1 risk allele, adjusted OR = 1.580, 95% CI: 1.069-2336, P = 0.022; 3-4 risk alleles vs. 0-2 risk allele, adjusted OR = 1.513, 95% CI: 1.031-2.219, P = 0.034). These findings indicate that miR-499 rs3746444 and miR-146a rs2910164 may represent novel markers of MI susceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.