Imbalances in neurotrophins or their high-affinity Trk receptors have long been reported in neurodegenerative diseases. However, a molecular link between these gene products and neuronal cell death has not been established. In the trisomy 16 (Ts16) mouse there is increased apoptosis in the cortex, and hippocampal neurons undergo accelerated cell death that cannot be rescued by administration of brain-derived neurotrophic factor (BDNF). Ts16 neurons have normal levels of the TrkB tyrosine kinase receptor but an upregulation of the TrkB.T1 truncated receptor isoform. Here we show that restoration of the physiological level of the TrkB.T1 receptor by gene targeting rescues Ts16 cortical cell and hippocampal neuronal death. Moreover, it corrects resting Ca2+ levels and restores BDNF-induced intracellular signaling mediated by full-length TrkB in Ts16 hippocampal neurons. These data provide a direct link between neuronal cell death and abnormalities in Trk neurotrophin receptor levels.
Our objective was to describe the racial and ethnic differences in experimental pain sensitivity. Four databases (PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, and PsycINFO) were searched for studies examining racial/ethnic differences in experimental pain sensitivity. Thermal-heat, cold-pressor, pressure, ischemic, mechanical cutaneous, electrical, and chemical experimental pain modalities were assessed. Risk of bias was assessed using the Agency for Healthcare Research and Quality guideline. Meta-analysis was used to calculate standardized mean differences (SMDs) by pain sensitivity measures. Studies comparing African Americans (AAs) and non-Hispanic whites (NHWs) were included for meta-analyses because of high heterogeneity in other racial/ethnic group comparisons. Statistical heterogeneity was assessed by subgroup analyses by sex, sample size, sample characteristics, and pain modalities. A total of 41 studies met the review criteria. Overall, AAs, Asians, and Hispanics had higher pain sensitivity compared with NHWs, particularly lower pain tolerance, higher pain ratings, and greater temporal summation of pain. Meta-analyses revealed that AAs had lower pain tolerance (SMD: -0.90, 95% confidence intervals [CIs]: -1.10 to -0.70) and higher pain ratings (SMD: 0.50, 95% CI: 0.30-0.69) but no significant differences in pain threshold (SMD: -0.06, 95% CI: -0.23 to 0.10) compared with NHWs. Estimates did not vary by pain modalities, nor by other demographic factors; however, SMDs were significantly different based on the sample size. Racial/ethnic differences in experimental pain sensitivity were more pronounced with suprathreshold than with threshold stimuli, which is important in clinical pain treatment. Additional studies examining mechanisms to explain such differences in pain tolerance and pain ratings are needed.
Spinal cord injury (SCI) frequently causes severe, persistent central neuropathic pain that responds poorly to conventional pain treatments. Brain-derived neurotrophic factor (BDNF) signaling appears to contribute to central sensitization and nocifensive behaviors in certain animal models of chronic pain through effects mediated in part by the alternatively spliced truncated isoform of the BDNF receptor tropomyosin-related kinase B.T1 (trkB.T1). Mechanisms linking trkB.T1 to SCI-induced chronic central pain are unknown. Here, we examined the role of trkB.T1 in central neuropathic pain after spinal cord contusion. Genetic deletion of trkB.T1 in mice significantly reduced post-SCI mechanical hyperesthesia, locomotor dysfunction, lesion volumes, and white matter loss. Whole genome analysis, confirmed at the protein level, revealed that cell cycle genes were upregulated in trkB.T1 ϩ/ϩ but not trkB.T1 Ϫ/Ϫ spinal cord after SCI. TGF-induced reactive astrocytes from WT mice showed increased cell cycle protein expression that was significantly reduced in astrocytes from trkB.T1 Ϫ/Ϫ mice that express neither full-length trkB nor trkB.T1. Administration of CR8, which selectively inhibits cyclin-dependent kinases, reduced hyperesthesia, locomotor deficits, and dorsal horn (SDH) glial changes after SCI, similar to trkB.T1 deletion, without altering trkB.T1 protein expression. In trkB.T1 Ϫ/Ϫ mice, CR8 had no effect. These data indicate that trkB.T1 contributes to the pathobiology of SCI and SCI pain through modulation of cell cycle pathways and suggest new therapeutic targets.
BackgroundA major clinical issue affecting 10-40% of cancer patients treated with oxaliplatin is severe peripheral neuropathy with symptoms including cold sensitivity and neuropathic pain. Rat models have been used to describe the pathological features of oxaliplatin-induced peripheral neuropathy; however, they are inadequate for parallel studies of oxaliplatin's antineoplastic activity and neurotoxicity because most cancer models are developed in mice. Thus, we characterized the effects of chronic, bi-weekly administration of oxaliplatin in BALB/c mice. We first studied oxaliplatin's effects on the peripheral nervous system by measuring caudal and digital nerve conduction velocities (NCV) followed by ultrastructural and morphometric analyses of dorsal root ganglia (DRG) and sciatic nerves. To further characterize the model, we examined nocifensive behavior and central nervous system excitability by in vivo electrophysiological recording of spinal dorsal horn (SDH) wide dynamic range neurons in oxaliplatin-treated miceResultsWe found significantly decreased NCV and action potential amplitude after oxaliplatin treatment along with neuronal atrophy and multinucleolated DRG neurons that have eccentric nucleoli. Oxaliplatin also induced significant mechanical allodynia and cold hyperalgesia, starting from the first week of treatment, and a significant increase in the activity of wide dynamic range neurons in the SDH.ConclusionsOur findings demonstrate that chronic treatment with oxaliplatin produces neurotoxic changes in BALB/c mice, confirming that this model is a suitable tool to conduct further mechanistic studies of oxaliplatin-related antineoplastic activity, peripheral neurotoxicity and pain. Further, this model can be used for the preclinical discovery of new neuroprotective and analgesic compounds.
Following spinal cord injury (SCI), astrocytes demonstrate long-lasting reactive changes, which are associated with the persistence of neuropathic pain and motor dysfunction. We previously demonstrated that upregulation of trkB.T1, a truncated isoform of the brainderived neurotrophic factor receptor (BDNF), contributes to gliosis after SCI, but little is known about the effects of trkB.T1 on the function of astrocytes. As trkB.T1 is the sole isoform of trkB receptors expressed on astrocytes, we examined the function of trkB.T1-driven astrocytes in vitro and in vivo. Immunohistochemistry showed that trkB.T1 ϩ cells were significantly upregulated 7 d after injury, with sustained elevation in white matter through 8 weeks. The latter increase was predominantly found in astrocytes. TrkB.T1 was also highly expressed by neurons and microglia/macrophages at 7 d after injury and declined by 8 weeks. RNA sequencing of cultured astrocytes derived from trkB.T1 ϩ/ϩ (WT) and trkB.T1 Ϫ/Ϫ (KO) mice revealed downregulation of migration and proliferation pathways in KO astrocytes. KO astrocytes also exhibited slower migration/proliferation in vitro in response to FBS or BDNF compared with WT astrocytes. Reduced proliferation of astrocytes was also confirmed after SCI in astrocyte-specific trkB.T1 KO mice; using mechanical allodynia and pain-related measurements on the CatWalk, these animals also showed reduced hyperpathic responses, along with improved motor coordination. Together, our data indicate that trkB.T1 in astrocytes contributes to neuropathic pain and neurological dysfunction following SCI, suggesting that trkB.T1 may provide a novel therapeutic target for SCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.