Farnesol prevents the germination of yeast cells into mycelia, a fact that may be useful in eliminating C. albicans pathogenicity. Given the clinical potential of farnesol, its impact on C. albicans and host cells merited further investigation. We thus studied the effect of farnesol on C. albicans growth and filamentation and on gingival epithelial cells and fibroblasts and the synergistic effect of both gingival cells and farnesol on C. albicans filamentation. Repeated additions of farnesol reduced the growth of C. albicans. Farnesol was also effective at reducing C. albicans germ tube formation. While farnesol inhibited germ tube formation under the conditions tested, it was most effective at inhibiting C. albicans filamentation when added to the culture medium at the same time as the serum. Farnesol also had an effect on gingival cells. In a serum-free medium, farnesol reduced fibroblast adhesion and proliferation, promoted epithelial cell differentiation and reduced proliferation up to 48 h post-treatment. These effects were not seen in the presence of serum. When C. albicans, farnesol and gingival cells were present in the same culture, significantly greater inhibition of the yeast-to-hyphal transition was observed than germ tube inhibition in cultures containing only C. albicans and farnesol, suggesting a synergistic effect between the gingival cells and farnesol in inhibiting the transition. Overall, the data suggest that farnesol is effective against C. albicans and may have an effect on host cells at certain concentrations.
The goal of this study was to optimize key processes in recreating functional and viable palatal mucosa-like tissue that would be easy to handle and would promote wound healing. Normal human gingival fibroblasts and epithelial cells and a clinically useful biomaterial, CollaTape, were used. Structural and ultrastructural analyses showed that the gingival fibroblasts and epithelial cells adhered to the biomaterial and proliferated. Following a 6-day culture, using 10(5) fibroblasts and 10(6) epithelial cells, a well-organized palatal mucosa-like tissue was engineered. The engineered epithelium displayed various layers, including a stratum corneum, and contained cytokeratin 16-positive cells located in the supra-basal layer. This palatal mucosa-like engineered tissue was designed to meet a variety of surgical needs. The biodegradable collagen membrane (CollaTape) contributed to the flexibility of the engineered tissue. This engineered innovative tissue may contribute to the reconstruction of oral soft-tissue defects secondary to trauma, congenital defects, and acquired diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.