In this paper, we address the problem of positive piezoresistance in high aspect ratio particle based polymer nanocomposites, a hybrid system at the center of research on flexible piezoresistive materials. We introduce a percolation theory based model relating the variation in electrical resistance to compressive strain and show that it gives accurate theoretical fits to experimental data presented in this paper, as well as to much of the available data in the literature. In contrast to existing theories, the model captures the characteristics of the particle network through experimentally definable parameters and does not rely on assumptions regarding the nature of the particles and/or the configuration of the network. It is further demonstrated that the presented theoretical framework is not limited to polymer nanocomposites with high aspect ratio particle but that it can explain piezoresistance in bulk electroconductive polymer nanocomposites in general. We find that the piezoresistive effect in such materials is rooted in a mechanical deformation induced change in the distribution of local conductances within the particle network, and we show that this change in the distribution of local conductances is well described by a strain dependent conductivity exponent, which scales with the magnitude of mechanical deformation. Besides, we demonstrate that these findings can be applied to the experimentally observed concentration dependence of the piezoresistance in polymer nanocomposites and, thus, to predicting the electric response to mechanical deformation at any particle concentration, which is expected to be highly instrumental in applied materials selection and performance evaluation.
We have modified single walled carbon nanotubes (SWCNTs) with well defined matrix-based architectures to improve interface interaction in SWCNT/epoxy composites. The hardener and two pre-synthesized oligomers containing epoxy and hardener moieties were covalently attached to the SWCNT walls by in situ diazonium or carboxylic coupling reactions. In this way, SWCNTs bearing amine or epoxide-terminated fragments of different molecular weights, which resemble the chemical structure of the cured resin, were synthesized. A combination of characterization techniques such as Raman and infrared absorption (FTIR) spectroscopy, elemental analysis and coupled thermogravimetry-FTIR spectroscopy were used to identify both the functional groups and degree of functionalization of SWCNTs synthesized by the laser ablation and arc-discharge methods. Depending on the type of reaction employed for the chemical functionalization and the molecular weight of the attached fragment, it was possible to control the degree of functionalization and the electronic properties of the functionalized SWCNTs. Improved dispersion of SWCNTs in the epoxy matrix was achieved by direct integration without using solvents, as observed from optical microscopy and rheology measurements of the SWCNT/epoxy mixtures. Composite materials using these fillers are expected to exhibit improved properties while preserving the thermosetting architecture.
The focus of this research is on network formation and electrical conduction in carbon nanotube polydimethylsiloxane nanocomposites. Carbon nanotube network formation prior to and during polymerization was monitored by means of simultaneous electrical and rheological characterization. Processing induced network formation at filler concentrations below statistical percolation was observed, and both the electrical resistivity and the voltage dependence of the sample resistance were found to increase with the degree of polymerization, indicating carbon nanotube separation during polymer cure. Electron tunnelling through insulating polymer layers was identified as the main conduction mechanism. Information about the final network structure and further details about electrical conduction were obtained from the piezoresistive response of the material. Electron tunnelling was found to be dominant at filler concentrations close to the percolation threshold. With increasing filler concentration a densification of the carbon nanotube network was observed, and the resistance behaviour at high filler content was better described by the behaviour of a parallel circuit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.