This article focuses on the capillary interactions arising when two spherical particles are connected by a concave liquid bridge. This scenario is found in many situations where particles are partially wetted by a liquid, like liquid films stabilized with nanoparticles. We analyze different parameters governing the liquid bridge: interparticle separation, wetting angle and liquid volume. The results are compiled in a liquid volume-wetting angle diagram in which the regions of existence (stability) or inexistence (instability) of the bridge are outlined and the possible maximum and minimal particle distances for which the liquid bridge may be found. Calculations of the capillary forces discriminate those conditions for which such force is repulsive or attractive. The results are plotted in form of maps that allow an easy understanding of the stability of a liquid bridge and the conditions at which it may be produced for the two particle model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.