A new and versatile class of HNO donors, the (hydroxylamino)pyrazolone (HAPY) series of HNO donors utilizing pyrazolone (PY) leaving groups, is described. HNO, the smallest N-based aldehyde equivalent, is used as a reagent along with a variety of PY compounds to synthesize the desired HAPY donors in what can be considered an N-selective HNO-aldol reaction in up to quantitative yields. The bimolecular rate constant of HNO with PY in pH 7.4 phosphate buffer at 37 °C can reach 8 × 10(5) M(-1) s(-1). In (1)H NMR experiments, the HAPY compounds generate HNO quantitatively (trapped as a phosphine aza-ylide) with half-lives spanning 3 orders of magnitude (minutes to days) under physiologically relevant conditions. B3LYP/6-31G* calculations confirm the energetically favorable reactions between HNO and the PY enol and enolate, whereas HNO release is expected to occur through the oxyanion (OHN-PY) of each HAPY compound. HNO has been shown to provide functional support to failing hearts.
Due to its inherent reactivity, HNO must be generated in situ through the use of donor compounds. One of the primary strategies for the development of new HNO donors has been modifying hydroxylamines with good leaving groups. A recent example of this strategy is the (hydroxylamino)barbituric acid (HABA) class of HNO donors. In this case, however, an undesired intramolecular rearrangement pathway to the corresponding hydantoin derivative competes with HNO formation, particularly in the absence of chemical traps for HNO. This competitive non-HNO-producing pathway has restricted the development of the HABA class to examples with fast HNO release profiles at physiological pH and temperature (t(1/2) < 1 min). Herein, the factors that favor the rearrangement pathway have been examined and two independent strategies that protect against rearrangement to favor HNO generation have been developed. The timecourse and stoichiometry for the in vitro conversion of these compounds to HNO (trapped as a phosphine aza-ylide) and the corresponding barbituric acid (BA) byproduct have been determined by (1)H NMR spectroscopy under physiologically relevant conditions. These results confirm the successful extension of the HABA class of pure HNO donors with half-lives at pH 7.4, 37 °C ranging from 19 to 107 min.
Background
In human heart failure, Ser199 (equivalent to Ser200 in mouse) of cardiac troponin I (cTnI) is significantly hyper-phosphorylated and in vitro studies suggest it enhances myofilament calcium sensitivity and alters calpain-mediated cTnI proteolysis. However, how its hyper-phosphorylation affects cardiac function in vivo remains unknown.
Methods and Results
To address the question, two transgenic mouse models were generated: a phospho-mimetic cTnIS200D and a phospho-silenced cTnIS200A, each driven by the cardiomyocyte-specific α-MHC promoter. Cardiac structure assessed by echocardiography and histology were normal in both transgenic models compared to littermate controls (n=5). Baseline in vivo hemodynamics and isolated muscle studies showed that cTnIS200D significantly prolonged relaxation and lowered left ventricular peak filling rate, whereas ejection fraction and force development were normal (n=5). However, with increased heart rate or beta-adrenergic stimulation, cTnIS200D mice had less enhanced ejection fraction or force development versus controls, whereas relaxation improved similarly to controls (n=5). By contrast, cTnIS200A was functionally normal both at baseline and under the physiological stresses. To test if either mutation impacted cardiac response to ischemic stress, isolated hearts were subjected to ischemia/reperfusion. cTnIS200D were protected, recovering 88±8% of contractile function versus 35±15% in littermate controls and 28±8% in cTnIS200A (n=5). This was associated with less cTnI proteolysis in cTnIS200D hearts.
Conclusions
Hyper-phosphorylation of this Serine in cTnI C-terminus impacts heart function by depressing diastolic function at baseline and limiting systolic reserve under physiological stresses. However, paradoxically it preserves heart function after ischemia/reperfusion injury potentially by decreasing proteolysis of cTnI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.