Midlatitude extreme weather events are responsible for a large part of climate‐related damage, yet our understanding of these extreme events is limited, partly due to the lack of a theoretical basis for midlatitude extreme weather. In this letter, the local finite‐amplitude wave activity (LWA) of Huang and Nakamura (2015) is introduced as a diagnostic of the 500 hPa geopotential height for characterizing midlatitude weather events. It is found that the LWA climatology and its variability associated with the Arctic Oscillation agree broadly with the previously reported blocking frequency in the literature. There is a strong seasonal and spatial dependence in the trends of LWA in recent decades. While there is no observational evidence for a hemispheric‐scale increase in wave amplitude, robust trends in wave activity can be identified at the regional scales, with important implications for regional climate change.
Systematic sensitivity of the jet position and intensity to horizontal model resolution is identified in several aquaplanet AGCMs, with the coarser resolution producing a more equatorward eddy-driven jet and a stronger upper-tropospheric jet intensity. As the resolution of the models increases to 50 km or finer, the jet position and intensity show signs of convergence within each model group. The mechanism for this convergence behavior is investigated using a hybrid Eulerian–Lagrangian finite-amplitude wave activity budget developed for the upper-tropospheric absolute vorticity. The results suggest that the poleward shift of the eddy-driven jet with higher resolution can be attributed to the smaller effective diffusivity of the model in the midlatitudes that allows more wave activity to survive the dissipation and to reach the subtropical critical latitude for wave breaking. The enhanced subtropical wave breaking and associated irreversible vorticity mixing act to maintain a more poleward peak of the vorticity gradient, and thus a more poleward jet. Being overdissipative, the coarse-resolution AGCMs misrepresent the nuanced nonlinear aspect of the midlatitude eddy–mean flow interaction, giving rise to the equatorward bias of the eddy-driven jet. In accordance with the asymptotic behavior of effective diffusivity of Batchelor turbulence in the large Peclet number limit, the upper-tropospheric effective diffusivity of the aquaplanet AGCMs displays signs of convergence in the midlatitude toward a value of approximately 107 m2 s−1 for the ∇2 diffusion. This provides a dynamical underpinning for the convergence of the jet stream observed in these AGCMs at high resolution.
Understanding the persistence of the Southern Annular Mode (SAM) is important for the intraseasonal and decadal predictability of SAM. Using the ERA-40 and ERA-Interim reanalysis data, this study introduces a new method to quantify the relative roles of barotropic and baroclinic eddy feedbacks in the SAM persistence. Through a hybrid Eulerian-Lagrangian Finite Amplitude Wave Activity diagnostic, it is found that (i) transient wave activity is important in driving the SAM, but it provides a negative feedback to the SAM persistence. (ii) Irreversible potential vorticity mixing, through barotropic processes in the upper troposphere, plays an important role in driving and sustaining the SAM variability. Particularly, following the poleward shift of the eddy-driven jet, the reduction/enhancement in effective diffusivity on the jet's poleward/equatorward flank can be understood by a stronger/weaker zonal jet acting as a robust/leaky mixing barrier. (iii) Baroclinic eddy generation and vertical wave propagation mainly act to sustain the SAM variability.
Diagnostics of finite-amplitude local wave activity (LWA) are applied to the 500-hPa geopotential height field to diagnose persistent synoptic weather events of anomalously large wave activity in the Northern Hemisphere. By considering the cyclonic and anticyclonic components of LWA separately, persistent weather systems associated with large-amplitude troughs and ridges are detected. While anticyclonic wave events are predominantly found over Europe and Alaska, cyclonic wave events usually occur over East Asia and northeastern Canada. Those preferred regions correspond to the location of planetary-scale ridges and troughs, which contribute, together with transient anomalies, to the formation of wave events. Although wave events are not blocking events per definition, they are typically associated with increased blocking in their vicinity. Their spatial relationship to blocking, however, varies depending on their cyclonic or anticyclonic nature and the type of wave-breaking signatures. Wave events are also shown to be accompanied by warm or cold temperature extremes, whose spatial pattern depends on the type of events, cyclonic or anticyclonic, and the sector affected. Trends in the frequency of wave events indicate that cyclonic wave events and the associated cold extremes affecting East Asia have become more frequent in recent decades and could be linked to recent trends toward La Niña–like conditions in the Pacific and trends toward the negative phase of Arctic Oscillation.
Low-level jets (LLJ) around the world critically support the food, water, and energy security in regions that they traverse. For the purposes of development planning and weather and climate prediction, it is important to improve understanding of how LLJs interact with the land surface and upper-atmospheric flow, and collectively, how LLJs have and may change over time. This study details the development and application of a new automated, dynamical objective classification of upper-atmospheric jet stream coupling based on a merging of the Bonner–Whiteman vertical wind shear classification and the finite-amplitude local wave activity diagnostic. The classification approach is transferable globally, but applied here only for the Great Plains (GP) LLJ (GPLLJ). The analysis spans the period from 1901 to 2010, enabled by the ECMWF climate-quality, coupled Earth reanalysis of the twentieth century. Overall, statistically significant declines in total GPLLJ event frequency over the twentieth century are detected across the entire GP corridor and attributed to declines in uncoupled GPLLJ frequency. Composites of lower- and upper-atmospheric flow are shown to capture major differences in the climatological, coupled GPLLJ, and uncoupled GPLLJ synoptic environments. Detailed analyses for southern, central, and northern GP subregions further highlight synoptic differences between weak and strong GPLLJs and provide quantification of correlations between total, coupled, and uncoupled GPLLJ frequencies and relevant atmospheric anomalies. Because uncoupled GPLLJs tend to be associated with decreased precipitation and low-level wind speed and enhanced U.S. ridge strength, this finding may suggest that support for drought over the twentieth century has waned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.