We present an improved quantitative mobility spectrum analysis (i-QMSA) procedure for determining free electron and hole densities and mobilities from magnetic-field-dependent Hall and resistivity measurements on bulk or layered semiconductor samples. The i-QMSA technique is based on a fundamentally new approach, which optimizes the fit to the conductivity tensor components and their slopes by making those adjustments in the mobility spectra that result in the greatest error reduction. Empirical procedures for manipulating the mobility spectra are also introduced, with the dual purpose of reducing the error of the fit and simplifying the shape of the spectra to minimize the presence of unphysical artifacts. A fully automated computer implementation of the improved QMSA is applied to representative synthetic and real data sets involving various semiconductor material systems. These results show that, as compared with previous approaches, the presented algorithm maximizes the information that may be extracted from a given data set, and is suitable for use as a standard tool in the characterization of semiconductor material and device transport properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.