A quantitative analysis of the crucial characteristics of currently used and promising materials for X-ray refractive optics is performed in the extended energy range 8-100 keV. According to the examined parameters, beryllium is the material of choice for X-ray compound refractive lenses (CRLs) in the energy range 8-25 keV. At higher energies the use of CRLs made of diamond and the cubic phase of boron nitride (c-BN) is beneficial. It was demonstrated that the presence of the elements of the fourth (or higher) period has a fatal effect on the functional X-ray properties even if low-Z elements dominate in the compound, like in YB. Macroscopic properties are discussed: much higher melting points and thermal conductivities of C and c-BN enable them to be used at the new generation of synchrotron radiation sources and X-ray free-electron lasers. The role of crystal and internal structure is discussed: materials with high density are preferable for refractive applications while less dense phases are suitable for X-ray windows. Single-crystal or amorphous glass-like materials based on Li, Be, B or C that are free of diffuse scattering from grain boundaries, voids and inclusions are the best candidates for applications of highly coherent X-ray beams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.