The Gate All Around (GAA) MOSFET is considered as one of the most promising devices for downscaling below 50 nm. By surrounding the channel completely, the gate gains increased electrostatic control of the channel and short-channel-effects (SCEs) can be drastically suppressed. However, challenges still remain to resolve the important issues particularly concerning hot-carrier reliability and accurate device models for nanoscale circuit designs. Hot-carrier effects have been the major issues in the longterm stability of subthreshold performances in a nanoscale MOS transistor. In this paper we present a two-dimensional analytical analysis of the subthreshold behavior, subthreshold current and subthreshold swing, including the interfacial hot-carrier effects. The calculated results of the proposed approach match well with those of the 2-D numerical device simulator. The present work provides valuable design insights in the performance of nanoscale CMOS-based devices including hot-carrier degradation effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.