We present here our recent results on the development and testing of the first mirrors for the divertor Thomson scattering diagnostics in ITER. The Thomson scattering system is based on several large-scale (tens of centimetres) mirrors that will be located in an area with extremely high (3–10%) concentration of contaminants (mainly hydrocarbons) and our main concern is to prevent deposition-induced loss of mirror reflectivity in the spectral range 1000–1064 nm. The suggested design of the mirrors—a high-reflective metal layer on a Si substrate with an oxide coating—combines highly stable optical characteristics under deposition-dominated conditions with excellent mechanical properties. For the mirror layer materials we consider Ag and Al allowing the possibility of sharing the Thomson scattering mirror collecting system with a laser-induced fluorescence system operating in the visible range. Neutron tests of the mirrors of this design are presented along with numerical simulation of radiation damage and transmutation of mirror materials. To provide active protection of the large-scale mirrors we use a number of deposition-mitigating techniques simultaneously. Two main techniques among them, plasma treatment and blowing-out, are considered in detail. The plasma conditions appropriate for mirror cleaning are determined from experiments using plasma-induced erosion/deposition in a CH4/H2 gas mixture. We also report data on the numerical simulation of plasma parameters of a capacitively-coupled discharge calculated using a commercial CFD-ACE code. A comparison of these data with the results for mirror testing under deuterium ion bombardment illustrates the possibility of using the capacitively-coupled discharge for in situ non-destructive deposition mitigation/cleaning.
The indium atom distribution in InGaAs/(Al)GaAs quantum
wells (QWs) grown by metal-organic chemical vapour deposition
was systematically studied. High-resolution grazing-sputter-angle
Auger electron spectroscopy was used as a method
of indium depth profile investigation. A broadening and shift to
the surface of the indium concentration profile in a single QW and an
increase of indium content in the upper QW for closely
spaced QWs were found. These results were confirmed by
photoluminescence measurements. It was observed that the use of
AlGaAs barriers between QWs and growth interruptions at QW
interfaces during the growth process reduce indium surface
segregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.