We investigate the electronic states in strained Ga0.62In0.38N0.015As0.985/GaAs multiple- quantum-well structures using photoluminescence and (polarized) photoluminescence excitation measurements at low temperature. From a theoretical fit to the experimental data, a type-I band alignment for the heavy holes with a strained conduction-band offset ratio of about 80% is obtained, while the light holes show an approximately flat band alignment. Additionally, our results suggest an increased effective electron mass in GaInNAs, possibly due to the interaction of the conduction band with nitrogen-related resonant states, an observation prospectively of benefit for GaInNAs-based diode lasers.
The acoustoelectric effect in a hybrid of a strong piezoelectric material and a semiconductor layer containing a two-dimensional electron system is investigated. Caused by the very strong interaction between a surface acoustic wave and the mobile carriers in the semiconductor, the acoustoelectric effect is very large as compared to other materials, which might be interesting for device applications. Moreover, the tunability of the sheet conductivity of the electron system enables us to tune the magnitude of the acoustoelectric effect over a wide range. We present experimental results for a GaAs/LiNbO3 layered hybrid system at room temperature and describe our experimental findings quantitatively using a recently developed model calculation.
The optical properties of GaInNAs/GaAs multi-quantum wells were investigated by photoluminescence excitation (PLE) spectroscopy, as well as by photoluminescence (PL), under various excitation intensities and at various temperatures. The PLE spectra demonstrated pronounced excitonic features and the corresponding transitions were identified. At low temperatures the PL spectra were sensitive to the excitation intensity. Under fixed excitation intensity, both the peak energy and the linewidth of photoluminescence showed anomalous temperature dependence, specifically an S-shaped temperature dependence of the peak energy and a N-shaped temperature dependence of linewidth in the PL spectra. The observed results are explained consistently in terms of the exciton localization effect due to the local fluctuations of nitrogen concentration
Focus of this work is the optimization of growth to achieve high quality laser material for emission at 1.3 mm and beyond. GaAs/GaAsN/InGaAsN heterostructures were grown by solid source molecular beam epitaxy. To achieve optimum crystal quality of InGaAsN heterostructures, growth was followed by a high temperature treatment at about 7008C. The high optical quality of our annealed material is attested by large exciton recombination lifetimes (more than 2 ns). Consequently, a decrease of single quantum well transparency current density down to 100 A/cm 2 is found and SWQ lasers with threshold current densities as low as 350 A/cm 2 have been made. This represents clearly the lowest laser thresholds reported so far for emission around 1.3 mm from the InGaAsN material system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.