Since the advance of lasers, these unique sources of highly intense and monochromatic radiation have been proposed as excellent tools to induce or catalyze chemical reactions. Due to the great interest to the problem of isotope production, investigation and application, the laser method of isotope separation has received the most attention worldwide and may be the first major commercial application oflasers to chemistry.Laser methods of isotope separation are based on high selectivity and power of laser sources of radiation. One of the most prominent method is based on the effect of isotope-selective multiphoton dissociation of molecules by LR-radiation (MLISmethod). This phenomena was discovered in Russia in 1974 and developed from scientific investigations to industrial scale production of '3C isotopes in collaboration between the Kurchatov Institute of Atomic Energy, 1'RINITI and Institute of Spectroscopy of RAS. Demonstration facilities for sulfur and carbon isotope separation with average productivity up to 2 g/h have been created as a result of collaboration and these systems are aimed at optimization of MLIS process and evaluation of its cost efficiency. Experiments show that laser produced isotopes are far cheaper as compared to any conventional technique.Results of basic scientific research, existing technological cooperation allow to start building a laser isotope separation plant. Light element isotopes produced there can answer a wide variety of demands in many technologies. These isotopes can be readily used in medicine, agriculture, environmental monitoring, etc.
CO 2 -laser-produced plasma ion component parameters were studied for aluminium and lead targets at laser intensity of P = 4×10 13 W cm −2 and pulse duration of τ = 15 ns experimentally and numerically. Angular dependences of ion number density for different charge states, average velocity and its spread were measured by time-of-flight method. Ion charge state distribution shows high-charge and low-charge state groups at normal expansion direction. Ions in these groups have different average expansion velocity and longitudinal velocity spread. Angular distribution of high-charge states is narrower than that of the low-charge state ion group, maximum yield of low-charge states occur at some angle from normal. For Al target results show similar trends as for Pb target, but simulations have indicated that the effect of laser ponderomotive force is more pronounced in this case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.