A theoretical model of foam as a consolidating continuum is proposed. The general model is applied to foam in a gravity settler. It is predicted that liquid drainage from foam in a gravity settler begins with a slow drainage stage. Next, a stage with faster drainage occurs where the drainage rate doubles compared to the initial stage. The experiments conducted within the framework of this work confirmed the theoretical predictions and allowed measurements of foam characteristics. Foams of three different concentrations of Pantene Pro-V Classic Care Solutions shampoo were studied, as well as the addition of polyethylene oxide (PEO) in one case. The shampoo's main foaming components are sodium lauryl sulfate and sodium laureth sulfate. It is shown to what extent foam drainage is slowed down by using higher shampoo concentrations and how it is further decreased by adding polymer (PEO).
Gravitational drainage from thin vertical surfactant solution films and gravitational drainage in a settler column are used to study the behavior of foams based on two-surfactant mixtures. Namely, solutions of the anionic sodium dodecyl sulfate (SDS) and nonionic superspreader SILWET L-77, and their mixtures at different mixing ratios, are studied. It is shown, for the first time, that solutions having a longer lifetime in the vertical film drainage process also possess a higher foamability. An additional and unexpected unique result is that when using a mixed surfactant system, the foamability can be much greater than the foamabilities of the individual components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.