The need to accurately document the spatiotemporal distribution of earthquakegenerated strong ground motions is essential for evaluating the seismic vulnerability of sites of critical infrastructure. Understanding the threshold for maximum earthquakeinduced ground motions at such sites provides valuable information to seismologists, earthquake engineers, local agencies, and policymakers when determining ground motion hazards of seismically sensitive infrastructures. In this context, fragile geologic features such as precariously balanced rocks (PBRs) serve as negative evidence for earthquake-induced ground motions and provide important physical constraints on the upper limits of ground motions. The three-dimensional (3D) shape of a PBR is a critical factor in determining its static stability and thus susceptibility to toppling during strong ground shaking events. Furthermore, the geomorphic settings of PBRs provide important controls on PBR exhumation histories that are interpreted from surface exposure dating methods. In this paper, we present PBRslenderness, a MATLAB-based program that evaluates the two-dimensional (2D) static stabilities of PBRs from unconstrained digital photographs. The program's graphical user interface allows users to interactively digitize a PBR and calculates the 2D geometric parameters that defi ne its static stability. A reproducibility study showed that our 2D calculations compare well against their counterparts that were computed in 3D (R 2 = 0.77-0.98 for 22 samples). A sensitivity study for single-user and multiuser digitization routines further confi rmed the reproducibility of PBRslenderness estimates (coeffi cients of variation c v = 4.3%-6.5% for 100 runs; R 2 = 0.87-0.99 for 20 PBRs). We used PBRslenderness to analyze 261 PBRs in a low-seismicity setting to investigate the local geomorphic controls on PBR stability and preservation. PBRslenderness showed that a PBR's shape strongly controls its static stability and that there is no relationship between a PBR's stability and its geomorphic location in a drainage basin. However, the geomorphic settings of PBRs control their preservation potential by restricting their formation to hillslope gradients <40掳 and the upper reaches of drainage basins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.