The effect of nitrogen addition on the structural and electronic properties of hydrogenated amorphous carbon ͑a-C:H͒ films has been characterized in terms of its composition, sp 3 bonding fraction, infrared and Raman spectra, optical band gap, conductivity, and paramagnetic defect. The variation of conductivity with nitrogen content suggests that N acts as a weak donor, with the conductivity first decreasing and then increasing as the Fermi level moves up in the band gap. Compensated behavior is found at about 7 at. % N, for the deposition conditions used here, where a number of properties show extreme behavior. The paramagnetic defect density and the Urbach tailwidth are each found to decrease with increasing N content. It is unusual to find alloy additions decreasing disorder in this manner.
Results of a study on internal stress, hardness, and structure of nitrogen-doped amorphous hydrogenated hard carbon films deposited by rf glow discharge from methane-nitrogen mixtures onto silicon substrate are presented. Films obtained for different N2 partial pressures (bias voltage Vb=−370 V and total pressure P=8 Pa) were characterized by infrared spectroscopy, Raman scattering, and nuclear techniques. The elemental composition, density, and structure are correlated with Vickers hardness and internal stress values, obtained from the substrate bending method. It has been observed that internal stress considerably decreases with increasing nitrogen content, in contrast to hardness, structure, and hydrogen concentration, which remain unchanged.
Fluorinated amorphous-carbon films (a-C:F:H) were deposited by low-power rf capacitively coupled plasma-enhanced chemical-vapor deposition using CH4–CF4 gas mixtures. Different series of films were deposited, changing one parameter at a time: the CF4 partial pressure from 0% to 100%, the self-bias voltage from −50 to −700 V, and the total deposition pressure from 5 to 15 Pa. The composition was determined by ion-beam analysis (IBA): Rutherford backscattering spectrometry, elastic recoil detection analysis, and nuclear reaction analysis. The atomic density of the films was evaluated by combining the IBA results with the thickness value measured by stylus profilometry. Film structure was investigated by infrared transmission and Raman scattering spectroscopies. The internal stress and Vickers hardness were also measured. For a fixed self-bias, the increase of the CF4 partial pressure leads to a higher fluorine incorporation and the decrease of both hardness and internal stress. The film microstructure changes from diamond-like to a polymer-like structure. The fluorine incorporation also increases with the self-bias, and fluorine-poor polymer-like films are deposited at low-bias voltage. Fluorine incorporation occurs at the expense of the hydrogen content in both cases, i.e., increasing the CF4 partial pressure or the self-bias. Finally, the role of ion bombardment during film growth on the mechanical and structure properties of the films is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.