The level of proviral DNA sequence variation in the V1V2 region was monitored over time in six HIV-1-infected individuals. Substitutional and length variation was observed, where the majority of length changes, ranging from 28 to 49 amino acids, was located within the V1 region. Evidence for convergent evolution in the V2 region was found. The functional significance of this variation was assessed by cloning the V1V2 sequences into an infectious molecular clone, HXB2. The majority of chimeras replicated, demonstrating that the sequences, though genetically distinct, were capable of conferring a viable phenotype. Chimeras expressing closely related sequences in a constant genetic background displayed different biological phenotypes, with respect to both cytopathicity and cell tropism. However, no association between primary V1V2 amino acid sequence and viability or cytopathicity of the chimeric virus was observed, suggesting that predictions of virus phenotype based on sequences alone may be incorrect. The effect of V1V2 variation on the overall gp 120 conformation was measured by expressing the gp 20 from a number of viable and nonviable clones. No differences were observed, suggesting that misfolding of the chimeric gp 120 protein was not an explanation for the nonviability of some virus clones. Several chimeras were noncytopathic and only able to replicate in PBMC cultures, demonstrating that the V1V2 region, independent of the V3 sequence, is capable of defining both tropism and cytopathicity.
The relationship between observed intermediate mass fragment and total charged particle multiplicities has been measured for Kr + Au collisions at energies between E/A = 35 and 400 MeV. Pragment multiplicities are greatest for central or near-central collisions. For these collisions, fragment production increases up to E/A-100 MeV, and then decreases at higher energies.
Signal transduction pathways are important in the adaptive response of microbes to their environment. A Pneumocystis carinii extracellular signal‐regulated protein kinase (MAPK) homologue, Mkp1, has been isolated by sequence similarity screening of P. carinii genomic DNA. The Mkp1 of P. carinii shows closest homology to other fungal MAP kinases involved in cell integrity signal transduction cascades, including Slt2p/Mpk1p of Saccharomyces cerevisiae, Mkc1 of Candida albicans and Mps1 of Magnaporthe grisea. Defects of Slt2p in S. cerevisiae result in phenotypes of slow growth, and temperature sensitivity in the absence of an osmostabilizer. Overexpression of mkp1 in a strain with the slt2Δ defect fully restored the normal growth rate, and partially reduced lysis at elevated temperatures. Complementation of the slt2Δ defect by Mkp1 demonstrates that Mkp1 is a functional MAP kinase, and that it may be the MAP kinase component of a similar signal transduction cascade within P. carinii. Furthermore, Mkp1 is activated in vitro upon the exposure of P. carinii to conditions of oxidative stress. The investigation of a MAP kinase signal transduction pathway of P. carinii will result in both a better understanding of the mechanism the organism utilizes to respond to environmental changes, and a system to assay responses to these changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.