Poliovirus and reovirus were found to aggregate into clumps of up to several hundred particles when diluted 10-fold into distilled water from a stock preparation of minimal aggregation in 0.05 M phosphate buffer, pH 7.2, plus 22 to 30% sucrose. Reovirus was also found to aggregate when diluted into phosphatebuffered saline. The aggregation was concentration dependent and did not occur when either virus was diluted into water 100-fold or greater. The aggregation of poliovirus was reversible by further addition of saline and produced a dispersed preparation of virus. Reovirus aggregation was not reversible. Both viruses aggregated when diluted into buffers at pH 5 and 3, and poliovirus aggregated at pH 6, and this aggregation of both viruses was reversible when returned to pH 7. Aggregation did not occur at alkaline pH values. Aggregation at low pH could be prevented by suitable concentrations of sodium or magnesium ions, but neither caused aggregation of either virus at pH 7. Calcium ions, however, were found to aggregate both viruses at a concentration of 0.01 M.
Inactivation of aggregated poliovirus by bromine is characterized by a continuously decreasing reaction rate. Poliovirus released from infected cells in these experiments by alternate freezing and thawing in water without electrolytes has always been aggregated. The aggregates persist even on 7,000-fold dilution in ion-free water. Virus similarly released into phosphate-buffered saline solution may be well dispersed, but it aggregates when sedimented into a salt-free sucrose gradient or when it is diluted as little as 10-fold in water. Large one-step dilutions of dispersed virus in water remain dispersed. Aggregated virus was not dispersed by one-step dilution (7,000-fold) in distilled or untreated lake water but was dispersed if phosphate-buffered saline or clarified secondary sewage plant effluent was used as diluent. Dispersed virus aggregates at all dilutions in alum-treated, finished water from the city filter plant. This may be the result of complex formation with insoluble material rather than virion-virion aggregation. A simple procedure is described for rendering a very dilute suspension of mixed virion aggregates into a three-part spectrum of sizes.
The inactivation rates of coxsackievirus B3 (CB3) and B5 (CB5) by chlorine in dilute buffer at pH 6 were very nearly the same and about half that of poliovirus (Mahoney) under similar conditions. Purified CB3, like the poliovirus, aggregated in the acid range but not at pH 7 and above. Purified CB5 aggregated rapidly at all pH values; still, the graph of log surviving infectivity versus time was a straight line. No chlorine inactivation data were obtained with dispersed CB5, for it could be dispersed only by addition of diethylaminoethyl dextran, which would react with the chlorine. Addition of 0.1 M NaCl to the buffer at pH 6 did not influence the aggregation of CB5 or the rate of chlorine action on either of the coxsackie-viruses, but at pH 10 it increased the disinfection activity of OCl- for both viruses roughly 20-fold. Cesium chloride had a similar but smaller effect. KCl was the most active of the three in this respect, making the inactivating effect of OCl- at pH 10 about equal to that of HOCl at pH 6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.