Background: Teneurins are a unique family of transmembrane proteins conserved from C. elegans and D. melanogaster to mammals. In vertebrates there are four paralogs (teneurin-1 to -4), all of which are expressed prominently in the developing central nervous system.
Teneurins are a unique family of transmembrane proteins conserved from Caenorhabditis elegans and Drosophila melanogaster to vertebrates, in which four paralogs exist. In vertebrates, teneurin expression is most prominent in the developing brain. Based on their distinct, complementary expression patterns, we suggest a possible function in the establishment of proper connectivity in the brain. Functional studies show that teneurins can stimulate neurite outgrowth, but they might also play a role in axon guidance as well as in target recognition and synaptogenesis, possibly mediated by homophilic interactions. Though teneurins are transmembrane proteins, there is evidence that the intracellular domain has a nuclear function, since it can interact with nuclear proteins and influence transcription. Therefore, we speculate that teneurins might be processed by proteolytic cleavage (possibly regulated intramembrane proteolysis), which is triggered by homophilic interactions or, alternatively, by the binding of a still unknown ligand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.