After many years of fusion research, the conditions needed for a D–T fusion reactor have been approached on the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)]. For the first time the unique phenomena present in a D–T plasma are now being studied in a laboratory plasma. The first magnetic fusion experiments to study plasmas using nearly equal concentrations of deuterium and tritium have been carried out on TFTR. At present the maximum fusion power of 10.7 MW, using 39.5 MW of neutral-beam heating, in a supershot discharge and 6.7 MW in a high-βp discharge following a current rampdown. The fusion power density in a core of the plasma is ≊2.8 MW m−3, exceeding that expected in the International Thermonuclear Experimental Reactor (ITER) [Plasma Physics and Controlled Nuclear Fusion Research (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 239] at 1500 MW total fusion power. The energy confinement time, τE, is observed to increase in D–T, relative to D plasmas, by 20% and the ni(0) Ti(0) τE product by 55%. The improvement in thermal confinement is caused primarily by a decrease in ion heat conductivity in both supershot and limiter-H-mode discharges. Extensive lithium pellet injection increased the confinement time to 0.27 s and enabled higher current operation in both supershot and high-βp discharges. Ion cyclotron range of frequencies (ICRF) heating of a D–T plasma, using the second harmonic of tritium, has been demonstrated. First measurements of the confined alpha particles have been performed and found to be in good agreement with TRANSP [Nucl. Fusion 34, 1247 (1994)] simulations. Initial measurements of the alpha ash profile have been compared with simulations using particle transport coefficients from He gas puffing experiments. The loss of alpha particles to a detector at the bottom of the vessel is well described by the first-orbit loss mechanism. No loss due to alpha-particle-driven instabilities has yet been observed. D–T experiments on TFTR will continue to explore the assumptions of the ITER design and to examine some of the physics issues associated with an advanced tokamak reactor.
A transport code (TRANSP) is used to simulate future deuterium-tritium (DT) experiments in TFTR. The simulations are derived from 14 TFTR DD discharges, and the modelling of one supershot is discussed in detail to indicate the degree of accuracy of the TRANSP modelling. Fusion energy yields and 01 particle parameters are calculated, including profiles of the 01 slowing down time, the 01 average energy, and the AlfvBn speed and frequency. Two types of simulation are discussed. The main emphasis is on the DT equivalent, where an equal mix of D and T is substituted for the D in the initial target plasma, and for the Do in the neutral beam injection, but the other measured beam and plasma parameters are unchanged. This simulation does not assume that 01 heating will enhance the plasma parameters or that confinement will increase with the addition of tritium. The maximum relative fusion yield calculated for these simulations is QDT-0.3, and the maximum a contribution to the central toroidal 0 is PJO)-0.5%. The stability of toroidicity induced Alfvkn eigenmodes (TAE) and kinetic ballooning modes (KBM) is discussed. The TAE mode is predicted to become unstable for some of the simulations, particularly after the termination of neutral beam injection. In the second type of simulation, empirical supershot scaling relations are used to project the performance at the maximum expected beam power. The MHD stability of the simulations is discussed.
A TFTR supershot with a plasma current of 2.5 MA, neutral beam heating power of 33.7 MW, and a peak DT fusion power of 7.5 MW is studied using the TRANSP plasma analysis code. Simulations of alpha parameters such as the alpha heating, pressure, and distributions in energy and Vparallel/ v are given. The effects of toroidal ripple and mixing of the fast alpha particles during the sawteeth observed after the neutral beam injection phase are modeled. The distributions of alpha particles on the outer midplane are peaked near fotward and backward Vparalel /
Strong shear in the plasma rotation is produced in the interior of a magnetically confined Q-machine plasma column by means of an externally controlled nonuniform radial electric field. Coherent low-frequency oscillations are observed localized in the velocity shear layer, which contains up to seven ion gyroradii. The observed oscillations are shown to result from the transverse Kelvin-Helmholtz instability by the good agreement with finite-Larmor-radius fluid theory for the mode frequencies, radial dependences of the potential and density fluctuations, and the mode structure at large magnetic field and small rotation. At large electric fields the low-frequency Kelvin-Helmholtz modes are completely suppressed. Simultaneously, there appear oscillations with ω>̃ωc, whose properties are described by the fluid equations when extended to arbitrary rotation and wave frequencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.