The onset of lactation in dairy cows is characterized by severe negative energy and protein balance. Methionine availability during this time for milk production, hepatic lipid metabolism, and immune function may be limiting. Supplementing Met to peripartal diets with adequate Lys in metabolizable protein (MP) to fine-tune the Lys:Met ratio may be beneficial. Fifty-six multiparous Holstein cows were fed the same basal diet from 50 d before expected calving to 30 d in milk. From -50 to -21 d before expected calving, all cows received the same diet [1.24 Mcal/kg of dry matter (DM), 10.3% rumen-degradable protein, and 4% rumen-undegradable protein] with no Met supplementation. From -21 d to expected calving, the cows received diets (1.54 Mcal/kg of DM, 10% rumen-degradable protein, and 5.1% rumen-undegradable protein) with no added Met (control, CON; n=14), CON plus MetaSmart (MS; Adisseo Inc., Antony, France; n=12), or CON plus Smartamine M (SM; Adisseo Inc.; n=12). From calving through 30 d in milk, the cows received the same postpartum diet (1.75 Mcal/kg of DM and 17.5% CP; CON), or the CON plus MS or CON plus SM. The Met supplements were adjusted daily and top-dressed over the total mixed ration at a rate of 0.19 or 0.07% (DM) of feed for MS or SM. Liver tissue was collected on -10, 7, and 21 d, and blood samples more frequently, from -21 through 21 d. Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC) with the preplanned contrasts CON versus SM + MS and SM versus MS. No differences in prepartal DM intake (DMI) or body condition score were observed. After calving, body condition score was lower (2.6 vs. 2.8), whereas DMI was greater (15.4 vs. 13.3 kg/d) for Met-supplemented cows. Postpartal diet × time interactions were observed for milk fat percentage, milk fat yield, energy-corrected milk:DMI ratio, and energy balance. These were mainly due to changes among time points across all treatments. Cows supplemented with either Met source increased milk yield, milk protein percentage, energy-corrected milk, and milk fat yield by 3.4 kg/d, 0.18% units, 3.9 kg/d, and 0.18 kg/d, respectively. Those responses were associated with greater postpartum concentration of growth hormone but not insulin-like growth factor 1. There was a diet × time effect for nonesterified fatty acid concentration due to greater values on d 7 for MS; however, liver concentration of triacylglycerol was not affected by diet or diet × time but increased postpartum. Blood neutrophil phagocytosis at 21 d was greater with Met supplementation, suggesting better immune function. Supplemental MS or SM resulted in a tendency for lower incidence of ketosis postpartum. Although supplemental MS or SM did not decrease liver triacylglycerol, it improved milk production-related traits by enhancing voluntary DMI.
The onset of lactation in dairy cows is characterized by high output of methylated compounds in milk when sources of methyl group are in short supply. Methionine and choline (CHOL) are key methyl donors and their availability during this time may be limiting for milk production, hepatic lipid metabolism, and immune function. Supplementing rumen-protected Met and CHOL may improve overall performance and health of transition cows. The objective of this study was to evaluate the effect of supplemental rumen-protected Met and CHOL on performance and health of transition cows. Eighty-one multiparous Holstein cows were used in a randomized, complete, unbalanced block design with 2×2 factorial arrangement of Met (Smartamine M, Adisseo NA, Alpharetta, GA) and CHOL (ReaShure, Balchem Inc., New Hampton, NY) inclusion (with or without). Treatments (20 to 21 cows each) were control (CON), CON+Met (SMA), CON+CHOL (REA), and CON+Met+CHOL (MIX). From -50 to -21d before expected calving, all cows received the same diet (1.40Mcal of NE/kg of DM) with no Met or CHOL. From -21d to calving, cows received the same close-up diet (1.52Mcal of NE/kg of DM) and were assigned randomly to treatments (CON, SMA, REA, or MIX) supplied as top dresses. From calving to 30 DIM, cows were fed the same postpartal diet (1.71Mcal of NE/kg of DM) and continued to receive the same treatments through 30 DIM. The Met supplementation was adjusted daily at 0.08% DM of diet and REA was supplemented at 60g/d. Incidence of clinical ketosis and retained placenta tended to be lower in Met-supplemented cows. Supplementation of Met (SMA, MIX) led to greater DMI compared with other treatments (CON, REA) in both close-up (14.3 vs. 13.2kg/d, SEM 0.3) and first 30d postpartum (19.2 vs. 17.2kg/d, SEM 0.6). Cows supplemented with Met (SMA, MIX) had greater yields of milk (44.2 vs. 40.4kg/d, SEM 1.2), ECM (44.6 vs. 40.5kg/d, SEM 1.0), and FCM (44.6 vs. 40.8kg/d, SEM 1.0) compared with other (CON, REA) treatments. Milk fat content did not differ in response to Met or CHOL. However, milk protein content was greater in Met-supplemented (3.32% vs. 3.14%, SEM 0.04%) but not CHOL-supplemented (3.27 vs. 3.19%, SEM 0.04%) cows. Supplemental CHOL led to greater blood glucose and insulin concentrations with lower glucose:insulin ratio. No Met or CHOL effects were detected for blood fatty acids or BHB, but a Met × time effect was observed for fatty acids due to higher concentrations on d 20. Results from the present study indicate that peripartal supplementation of rumen-protected Met but not CHOL has positive effects on cow performance.
The immunometabolic status of peripartal cows is altered due to changes in liver function, inflammation, and oxidative stress. Nutritional management during this physiological state can affect the biological components of immunometabolism. The objectives of this study were to measure concentrations of biomarkers in plasma, liver tissue, and milk, and also polymorphonuclear leukocyte function to assess the immunometabolic status of cows supplemented with rumen-protected methionine (Met) or choline (CHOL). Forty-eight multiparous Holstein cows were used in a randomized complete block design with 2×2 factorial arrangement of Met (Smartamine M, Adisseo NA, Alpharetta, GA) and CHOL (ReaShure, Balchem Inc., New Hampton, NY) level (with or without). Treatments (12 cows each) were control (CON), no Met or CHOL; CON and Met (SMA); CON and CHOL (REA); and CON and Met and CHOL (MIX). From -50 to -21d before expected calving, all cows received the same diet [1.40Mcal of net energy for lactation (NE)/kg of DM] with no Met or CHOL. From -21d to calving, cows received the same close-up diet (1.52Mcal of NE/kg of DM) and were assigned randomly to each treatment. From calving to 30d, cows were on the same postpartal diet (1.71Mcal of NE/kg of DM) and continued to receive the same treatments until 30d. The Met supplementation was adjusted daily at 0.08% DM of diet, and CHOL was supplemented at 60g/cow per day. Liver (-10, 7, 21, and 30d) and blood (-10, 4, 8, 20, and 30d) samples were harvested for biomarker analyses. Neutrophil and monocyte phagocytosis and oxidative burst were assessed at d 1, 4, 14, and 28d. The Met-supplemented cows tended to have greater plasma paraoxonase. Greater plasma albumin and IL-6 as well as a tendency for lower haptoglobin were detected in Met- but not CHOL-supplemented cows. Similarly, cows fed Met compared with CHOL had greater concentrations of total and reduced glutathione (a potent intracellular antioxidant) in liver tissue. Upon a pathogen challenge in vitro, blood polymorphonuclear leukocyte phagocytosis capacity and oxidative burst activity were greater in Met-supplemented cows. Overall, liver and blood biomarker analyses revealed favorable changes in liver function, inflammation status, and immune response in Met-supplemented cows.
Peripartal cows likely require greater amounts of Met not only at the tissue and cell level for methylation reactions but also for milk protein synthesis after calving. Thirty-nine Holstein cows were fed throughout the peripartal period (-21 d to 30 d in milk) a basal control (CON) diet (n=14) with no Met supplementation, CON plus MetaSmart (MS; Adisseo Inc., Antony, France; n=12), or CON plus Smartamine M (SM; Adisseo Inc.; n=13). The Met supplements were adjusted daily and top-dressed over the total mixed ration at a rate of 0.19 or 0.07% (dry matter) of feed for MS or SM. Liver tissue was collected on -10, 7, and 21 d for transcriptome profiling of genes associated with Met and glutathione metabolism as well as components of the inflammation, oxidative stress, growth hormone/insulin-like growth factor-1 axis, and DNA methylation pathways. Data were analyzed using PROC MIXED of SAS (SAS Institute Inc., Cary, NC) with the preplanned contrasts CON versus SM + MS and SM versus MS. The S-adenosylhomocysteine hydrolase (SAHH) gene was the most abundant among all genes evaluated, with overall greater expression in Met-supplemented cows than CON, and in SM than MS. Expression of Met adenosyltransferase 1A (MAT1A) was greater in Met-supplemented cows than CON by 21 d postpartum. A greater overall expression of 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) occurred in Met-supplemented cows than CON. In contrast, the expression of glutathione synthase (GSS); glutamate-cysteine ligase, catalytic subunit (GCLC); and superoxide dismutase 1, cytosolic (SOD1) was lower in Met-supplemented cows than CON. A greater overall expression of nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFKB1) and greater upregulation of haptoglobin (HP) on d 7 occurred in Met-supplemented cows than CON. Expression of DNA cytosine-5-methyltransferase 3 alpha (DNMT3A) was greater but expression of DNMT1 was lower in Met-supplemented cows than CON. The response observed in SAHH reflects its importance to Met supplementation during the peripartum period. Despite greater HP expression after calving, the lower expression of glutathione (GSS and GCLC) metabolism genes and SOD1 due to Met reflect a lower oxidative stress and mild inflammatory status. The extent to which changes in expression of DNMT3A and DNMT1 result in epigenetic effects partly responsible for the previously observed enhanced performance in Met-supplemented cows remains to be examined. Increasing the supply of Met as SM or MS can affect expression of genes in the Met cycle to various extents and, hence, the supply of methyl donors such as S-adenosylmethionine and antioxidants such as glutathione. These compounds likely are in high demand during the peripartum period.
In nonruminants, nutrition during pregnancy can program offspring development, metabolism, and health in later life. Rumen-protected Met (RPM) supplementation during the prepartum period improves liver function and immune response in dairy cows. Our aim was to investigate the effects of RPM during late pregnancy on blood biomarkers (23 targets) and the liver transcriptome (24 genes) in neonatal calves from cows fed RPM at 0.08% of diet dry matter/d (MET) for the last 21 d before calving or controls (CON). Blood (n=12 calves per diet) was collected at birth before receiving colostrum (baseline), 24 h after receiving colostrum, 14, 28, and 50 d (post-weaning) of age. Liver was sampled (n=8 calves per diet) via biopsy on d 4, 14, 28, and 50 of age. Growth and health were not affected by maternal diet. The MET calves had greater overall plasma insulin concentration and lower glucose and ratios of glucose-to-insulin and fatty acids-to-insulin, indicating greater systemic insulin sensitivity. Lower concentration of reactive oxygen metabolites at 14 d of age along with a tendency for lower overall concentration of ceruloplasmin in MET calves indicated a lesser degree of stress. Greater expression on d 4 of fructose-bisphosphatase 1 (FBP1), phosphoenolpyruvate carboxykinase 1 (PCK1), and the facilitated bidirectional glucose transporter SLC2A2 in MET calves indicated alterations in gluconeogenesis and glucose uptake and release. The data agree with the greater expression of the glucocorticoid receptor (GR). Greater expression on d 4 of the insulin receptor (INSR) and insulin-responsive serine/threonine-protein kinase (AKT2) in MET calves indicated alterations in insulin signaling. In that context, the similar expression of sterol regulatory element-binding transcription factor 1 (SREBF1) in CON and MET during the preweaning period followed by the marked upregulation regardless of diet after weaning (d 50) support the idea of changes in hepatic insulin sensitivity during early postnatal life. Expression of carnitine palmitoyltransferase 1A (CPT1A) was overall greater and acyl-CoA oxidase 1 (ACOX1) was lower in MET calves, indicating alterations in fatty acid oxidation. Except forkhead box O1 (FOXO1), all genes changed in expression over time. Transcriptome results indicated that calves from MET-supplemented cows underwent a faster maturation of gluconeogenesis and fatty acid oxidation in the liver, which would be advantageous for adapting to the metabolic demands of extrauterine life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.