Infrared (IR) absorption spectroscopy and mass spectrometry have been simultaneously applied to dusty radiofrequency (RF) plasmas in methane, acetylene and ethylene. The combination of IR absorption spectroscopy and mass spectrometry allows the chemical composition and structure of the most relevant plasma-produced neutral species, the ionic plasma composition and the chemical composition of the nanometer-sized particles to be precisely identified. The production of acetylenic compounds (C2Hx) seems to be a key mechanism for the powder formation in all the investigated hydrocarbon plasmas. Electron attachment to acetylenic compounds and the following ion-neutral reactions might lead to the high-mass carbon anions, which are trapped in the plasma and finally end in powder formation. The hydrogenation of the monomer strongly influences the composition of the ions. Finally the composition of the plasma-produced particles is mainly sp3 bonded carbon and the infrared spectra show similarities to that of polyethylene.
The gas phase species produced in rf plasmas of
hexamethyldisiloxane (HMDSO), Si2O(CH3)6, diluted with oxygen,
have been investigated. The complementarity of Fourier transform infrared
absorption spectroscopy and mass spectrometry allows the determination of
the most abundant neutral components present in the discharge. The
measurements reveal that methyl groups (CH3), abundantly formed by the
dissociation of the HMDSO molecule, are the precursor for the most
abundant species which stem from two kinds of reaction. The first kind of
reaction is combustion of CH3 by oxygen-producing formaldehyde
(COH2), formic acid (CO2H2), carbon monoxide (CO), carbon dioxide
(CO2) and water. It is shown that high mass carbonated radicals, such
as SixOyCzHt, first diffuse to the surface and then the carbon
is removed by oxygen etching to form CO2. The second is hydrocarbon
chemistry promoted by CH3, producing mainly hydrogen (H2), methane
(CH4) and acetylene (C2H2).
Non-uniform voltage distribution across the electrode area results in inhomogeneous thin-film RF plasma deposition in large-area reactors. In this work, a two-dimensional analytic model for the calculation of the voltage distribution across the electrode area is presented. The results of this model are in good agreement with measurements performed without plasma at 13.56 MHz and 70 MHz in a large-area reactor. The principal voltage inhomogeneities are caused by logarithmic singularities in the vicinity of RF connections and not by standing waves. These singularities are only described by a two-dimensional model and cannot be intuitively predicted by analogy to a one-dimensional case. Plasma light emission measurements and thickness homogeneity studies of a-Si:H deposited films show that the plasma reproduces these voltage inhomogeneities. Improvement of the voltage uniformity is investigated by changing the number and position of the RF connections.
In situ Fourier transform infrared absorption spectroscopy has been used to study the composition of particles formed and suspended in radio-frequency discharges of silane-oxygen-argon gas mixtures. The silane gas consumption was observed by infrared absorption. The stoichiometry of the produced particles depends on the silane flow rate and was compared with commercial colloidal silica. A small proportion of silane gas produces nanometric stoichiometric particles whereas a large proportion produces larger under-stoichiometric particles. Absorption spectroscopy was sufficiently sensitive to reveal particles too small to be visually observed by laser light scattering. Post-oxidation of hydrogenated silicon particles trapped in an argon plasma was obtained by adding oxygen. Mass spectrometry of negative and positive ions showed an extensive range of ionic clusters which may be at the origin of the observed particle formation. A model based on an iterative reaction sequence gives a good agreement with the measured positive ion mass spectrum.
Particle contamination formed in reactive plasmas imposes an upper limit on the rate for particle-free deposition. Conversely, these plasmas could be exploited to produce nanometric clusters and particles for various applications. Infrared absorption spectroscopy has been applied to analyse the chemical composition of suspended particles. Mass spectrometry was also used to investigate cluster formation in these deposition plasmas. In pure silane plasmas, a random model reproduces the measured mass spectra, whereas the rich plasma chemistry in silane/oxygen mixtures shows a remarkable tendency to produce silasesquioxane anions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.