The kinetics of realgar (As2S2) oxidation was studied under isothermal and non-isothermal conditions. The obtained values of the activation energy indicate that the process occurs in the kinetic domainwith the realgar particles being converted to As2O3 and As4O6 (g). The very fast reaction rates were limited by the chemical reaction. The kinetic equation was found to be: ?ln (1??) = 4.56 x 103 x e(?8780/T) x t. The proposed reaction mechanism and chemical transformation investigated by ICP?AES, EDXRF and thermal analysis are discussed.
Life-cycle assessment (LCA) presents a relatively new approach, which allows comprehensive environmental consequences analysis of a product system over its entire life. This analysis is increasingly being used in the industry, as a tool for investigation of the influence of the product system on the environment, and serves as a protection and prevention tool in ecological management. This method is used to predict possible influences of a certain material to the environment through different development stages of the material. In LCA, the product systems are evaluated on a functionally equivalent basis, which, in this case, was 1000 cubic centimeters of an alloy. Two of the LCA phases, life-cycle inventory (LCA) and life-cycle impact assessment (LCIA), are needed to calculate the environmental impacts. Methodology of LCIA applied in this analysis aligns every input and output influence into 16 different categories, divided in two subcategories. The life-cycle assessment reaserch review of the leadfree solders Sn-Cu, SAC (Sn-Ag-Cu), BSA (Bi-Sb-Ag) and SABC (Sn-Ag-Bi-Cu) respectively, is given in this paper, from the environmental protection aspect starting from production, through application process and finally, reclamation at the end-of-life, i.e. recycling. There are several opportunities for reducing the overall environmental and human health impacts of solder used in electronics manufacturing based on the results of the LCA, such as: using secondary metals reclaimed through post-industrial recycling; power consumption reducing by replacing older, less efficient reflow assembly equipment, or by optimizing the current equipment to perform at the elevated temperatures required for lead-free soldering, etc. The LCA analysis was done comparatively in relation to widely used Sn-Pb solder material. Additionally, the impact factors of material consumption, energy use, water and air reserves, human health and ecotoxicity have been ALSO considered including the potentials for dissolution and recycling processes
Selective arsenic extraction from enargite based complex concentrate from Copper Mine in Bor (Serbia), using sodium hypochlorite as a leaching agent, was investigated in this paper. The aim was to assess the optimal conditions for the most efficient arsenic removal from the investigated concentrate, based on factorial design applied to experimentally obtained data. Five important factors with three factor levels were used as the input variables and experimentally obtained arsenic extraction yield was taken as the output variable. The first and the second final order model equations were obtained. It was found that the leaching temperature had the strongest effect on the arsenic extraction. The strongest positive interaction was between the sodium hypochlorite molar concentration and the stirring speed during extraction.
Električni i elektronski otpad sve više ugrožava životnu sredinu ali i predstavlja značajan izvor korisnih metala. To se posebno odnosi na istrošene štampane ploče. One omogućavaju dobijanje osnovnih metala na ekonomski efikasan i ekološki prihvatljiv način. Ekstrakcija metala iz štampanih ploča iziskuje kombinaciju fizičkih, pirometalurških i hidrometalurških postupaka. Predmet ovog rada je hidrometalurški postupak dobijanja bakra iz otpadnih štampanih ploča zbog prednosti u odnosu na ostale postupke. Težište rada je, pri tome, na analizi različitih mogućnosti kiselinskog luženja bakra iz elektronskog otpada-prvom koraku hidrometalurškog tretmana.
In this paper, the influence of structural and textural characteristics of sulfide minerals on their leaching from a polymetallic concentrate by sulfuric acid and sodium nitrate solution is presented. The starting material was Pb?Zn?Cu sulphide polymetallic concentrate enriched during the flotation of a polymetallic ore in the "Rudnik" flotation plant (Rudnik ? Serbia). Leaching experiments were carried out in a closed glass reactor, which provides stable hermetic conditions and allows heating at constant temperature. Chemical, XRD, qualitative and quantitative microscopic and SEM/EDX analyses were used to characterizes samples of the polymetallic concentrate and leach residue. It was determined that chalcopyrite, sphalerite, galena, pyrrhotite and quartz were present in the polymetallic concentrate. The content of sulphide minerals was 69.5%, of which 60.9% occurred as liberated grains: 88.3% of chalcopyrite, 59.3% of sphalerite, 25.1% of galena and 51.6% of pirrhotite. The rest of chalcopyrite, sphalerite, galena and pirrhotite grains were in the forms of inclusions, impregnations, and simple and complex intergrowths. During the leaching process by sodium nitrate and sulphuric acid solution, it was shown previously that the leaching rate of sulphide minerals decreased with time while a part of the sulphide minerals remained in the leach residue. After leaching at 80?C for 120 min, the yields were 69.8, 82.7 and 67.1% for Cu, Zn and Fe, respectively. Lead, in the form of insoluble anglesite, remained in the leach residue. In addition to the anglesite, unleached sulfide minerals and quartz, elemental sulfur was found in the solid residue. The content of sulphide minerals was 35% of which 33.7% minerals occur independently. In specific, 54.7% of chalcopyrite, 31.9% of sphalerite, 8.2% of galena and 37.6% of pyrrhotite appear as separate grains with highly corroded surfaces. Therefore, the structural assembly of sulphide grains in the polymetallic concentrate is favourable and it is not the reason for the observed decrease in the leaching rate in the final process stages. The obtained findings may be explained by the presence of elemental sulphur that is formed during the reaction and precipitated at the grain surfaces, thus creating a diffusion barrier for the leach solution. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR34023]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.