(PTB) operate cold-atom based primary frequency standards which are capable of realizing the SI second with a relative uncertainty of 1 × 10 −15 or even below. These institutes performed an intense comparison campaign of selected frequency references maintained in their laboratories during about 25 days in October/November 2004. Active hydrogen maser reference standards served as frequency references for the institutes' fountain frequency standards. Three techniques of frequency (and time) comparisons were employed. Two-way satellite time and frequency transfer (TWSTFT) was performed in an intensified measurement schedule of 12 equally spaced measurements per day. The data of dual-frequency geodetic Global Positioning System (GPS) receivers were processed to yield an ionosphere-free linear combination of the code observations from both GPS frequencies, typically referred to as GPS TAI P3 analysis. Last but not least, the same GPS raw data were separately processed, allowing GPS carrier-phase (GPS CP) based frequency comparisons to be made. These showed the lowest relative frequency instability at short averaging times of all the methods. The instability was at the level of 1 part in 10 15 at one-day averaging time using TWSTFT and GPS CP. The GPS TAI P3 analysis is capable of giving a similar quality of data after averaging over two days or longer. All techniques provided the same mean frequency difference between the standards involved within the 1σ measurement uncertainty of a few parts in 10 16. The frequency differences between the three fountains of IEN (IEN-CsF1), NPL (NPL-CsF1) and OP (OP-FO2) were evaluated. Differences lower than the 1σ measurement uncertainty were observed between NPL and OP, whereas the IEN fountain deviated by about 2σ from the other two fountains.
We demonstrate the capability of accurate time transfer using optical fibers over long distances utilizing a dark fiber and hardware which is usually employed in two-way satellite time and frequency transfer (TWSTFT). Our time transfer through optical fiber (TTTOF) system is a variant of the standard TWSTFT by employing an optical fiber in the transmission path instead of free-space transmission of signals between two ground stations through geostationary satellites. As we use a dark fiber there are practically no limitations to the bandwidth of the transmitted signals so that we can use the highest chip-rate of the binary phase-shift modulation available from the commercial equipment. This leads to an enhanced precision compared to satellite time transfer where the occupied bandwidth is limited for cost reasons. The TTTOF system has been characterized and calibrated in a common clock experiment at PTB, and the combined calibration uncertainty is estimated as 74 ps. In a second step the remote part of the system was operated at Leibniz Universität Hannover, Institut für Quantenoptik (IQ) separated by 73 km from PTB in Braunschweig. In parallel, a GPS time transfer link between Braunschweig and Hannover was established, and both links connected a passive hydrogen maser at IQ with the reference time scale UTC(PTB) maintained in PTB. The results obtained with both links agree within the 1-σ uncertainty of the GPS link results, which is estimated as 0.72 ns. The fiber link exhibits a nearly 10-fold improved stability compared to the GPS link, and assessment of its performance has been limited by the properties of the passive maser.
Two-way satellite time and frequency transfer (TWSTFT) has become an important technical component in the process of the realization of International Atomic Time. To employ the full potential of the technique, especially for true time transfer, a dedicated calibration is necessary. This consists of the calibration either of the operational link at large, including every component involved, or of the involved ground stations' internal delays only. Both modes were successfully employed by circulating and operating a portable reference station between the sites involved. In this paper, we summarize the theoretical background for the different calibration modes applied and report examples of results from the 13 calibration campaigns performed up to now in Europe and between Europe and the United States. In all of these exercises, estimated uncertainties around 1 ns were achieved. Consecutive campaigns showed a very good reproducibility at the nanosecond level. Additionally, we address and briefly discuss sources that possibly limit the uncertainty for true time transfer employing TWSTFT.
In this paper we report that carrier-phase two-way satellite time and frequency transfer (TWSTFT) was successfully demonstrated over a very long baseline of 9,000 km, established between the National Institute of Information and Communications Technology (NICT) and the Physikalisch-Technische Bundesanstalt (PTB). We verified that the carrier-phase TWSTFT (TWCP) result agreed with those obtained by conventional TWSTFT and GPS carrier-phase (GPSCP) techniques. Moreover, a much improved short-term instability for frequency transfer of 2 × 10 −13 at 1 s was achieved, which is at the same level as previously confirmed over a shorter baseline within Japan. The precision achieved was so high that the effects of ionospheric delay became significant which are ignored in conventional TWSTFT even over a long link. We compensated for these effects using ionospheric delays computed from regional vertical total electron content maps. The agreement between the TWCP and GPSCP results was improved because of this compensation.Carrier-phase Two-Way Satellite Frequency Transfer over a Very Long Baseline
The Physikalisch-Technische Bundesanstalt (PTB) has substantially improved the quality of its local time scale UTC(PTB), which is the national realization of the international time reference Coordinated Universal Time (UTC). It serves as basis for PTB's time services, for local clock comparisons and for international time comparisons. Since February 2010 UTC(PTB) has been realized using an active hydrogen maser (AHM) steered in frequency via a phase micro stepper according to an algorithm which combines the frequency comparison data between the AHM and primary and commercial caesium clocks of PTB. Thereby the long-term stability and accuracy of PTB's primary clocks, in particular its fountain clock CSF1, were combined with the short-term frequency stability of the AHM. CSF1 data were used to calculate the steering on all days except of 6 days during 15 months. During the time between July 2010 and July 2011, the time difference between UTC(PTB) and UTC was always less than 6 ns and the monthly mean rate differences never exceeded 0.16 ns/day.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.