In two-wavelength interferometry, synthetic wavelengths are generated in order to reduce the sensitivity or to extend the range of unambiguity for interferometric measurements. Here a novel optoelectronic technique, called superheterodyne detection, is presented, which permits measurement of the phase difference of two optical frequencies that cannot be resolved by direct optoelectronic heterodyne detection. This technique offers the possibility for operation of two-wavelength interferometry in real time with arbitrary synthetic wavelengths from micrometers to meters in length. Preliminary experimental results are reported. An optical arrangement for absolute range-finding applications using tunable-laser sources (e.g., semiconductor lasers) is proposed.
Continuous surface-relief diffractive optical elements for two-dimensional array generation (fan-out) are designed and fabricated. Separable and nonseparable solutions for the two-dimensional element design are compared. The phase-grating microstructures are generated by laser-beam writing lithography in a single exposure step and converted to nickel shims by electroplating, enabling low-cost replicas to be produced by using laboratory and commercial replication processes. Results are presented for a 9 x 9 fan-out diffractive optical element with a measured efficiency of 94% and an overall uniformity within ±8%; replicas in epoxy have the same efficiency and a uniformity of ± 15%.
The fabrication of kinoform micro-optical elements for applications in optical computing is described. The elements are recorded as continuous microrelief structures by programmable laser beam writing in photoresist with a computer-controlled precision xy stage and a modulated, focused laser beam. Kinoform structures can be programmed to any desired profile that is required for reproducing complex, optimized structures that are found by computer design techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.