Metal batteries have been emerging as next‐generation battery systems by virtue of ultrahigh theoretical specific capacities and low reduction potentials of metallic anodes. However, significant concerns regarding the uncontrolled metallic dendrite growth accompanied by safety hazards and short lifespan have impeded practical applications of metal batteries. Although a great deal of effort has been pursued to highlight the thermodynamic origin of dendrite growth and a variety of experimental methodologies for dendrite suppression, the roles of polymer materials in suppressing the dendrite growth have been underestimated. This review aims to give a state‐of‐the‐art overview of contemporary dendrite‐suppressing polymer materials from the electro‐chemo‐mechanical viewpoint of macromolecular design, including i) homogeneous distribution of metal ion flux, ii) mechanical blocking of metal dendrites, iii) tailoring polymer structures, and iv) modulating the physical configuration of polymer membranes. Judiciously tailoring electro‐chemo‐mechanical properties of polymer materials provides virtually unlimited opportunities to afford safe and high‐performance metal battery systems by resolving problematic dendrite issues. Transforming these rational design strategies into building dendrite‐suppressing polymer materials and exploiting them towards polymer electrolytes, separators, and coating materials hold the key to realizing safe, dendrite‐free, and long‐lasting metal battery systems.
Sodium metal batteries have been emerging as promising candidates for post-Li battery systems owing to the natural abundance, low costs, and high energy density of Na metal. However, exploiting an Na metal anode is accompanied by uncontrolled Na electrodeposition, particularly concerning dendrite growth, hampering practical Na metal battery applications. Herein, we propose sodiophilic gel polymer electrolytes with a porosity-gradient Janus structure to alleviate Na dendrite growth. Tethering only 1.1 mol % sodiophilic poly(ethylene glycol) to poly(vinylidene fluoride−co−hexafluoropropylene) suppresses Na dendrites by regulating homogeneous Na + distribution, which relies on molecular-level coordination between Na + and the sodiophilic functional groups. By exploiting the porosity-gradient Janus structure, we have demonstrated that regular porosity and well-defined morphology of polymer electrolytes, particularly at the Na/electrolyte interface, significantly impact dendrite growth. This study provides new insights into the rational design of Na dendrite-suppressing polymer electrolytes, primarily focusing on the ion-regulating ability achieved by surface engineering.
In this study, thin carbon films with good electrical properties were prepared using commercial novolac resins by ion beam irradiation and carbonization. Novolac films were irradiated with ion beams and then carbonized under inert atmosphere. Based on the FTIR and UV results, the novolac resins were found to be crosslinked by ion beam irradiation without any additives. The Raman and XRD results indicate that carbon films with pseudo-graphitic structures were formed by carbonization of the ion beam irradiated novolac films. The sheet resistance of the prepared carbon films decreased to 1.35 × 102 Ω/ with an increasing fluence. The prepared carbon films showed a good electrical conductivity of ∼2.34 × 102 S/cm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.