Sodium metal batteries have been emerging as promising candidates for post-Li battery systems owing to the natural abundance, low costs, and high energy density of Na metal. However, exploiting an Na metal anode is accompanied by uncontrolled Na electrodeposition, particularly concerning dendrite growth, hampering practical Na metal battery applications. Herein, we propose sodiophilic gel polymer electrolytes with a porosity-gradient Janus structure to alleviate Na dendrite growth. Tethering only 1.1 mol % sodiophilic poly(ethylene glycol) to poly(vinylidene fluoride−co−hexafluoropropylene) suppresses Na dendrites by regulating homogeneous Na + distribution, which relies on molecular-level coordination between Na + and the sodiophilic functional groups. By exploiting the porosity-gradient Janus structure, we have demonstrated that regular porosity and well-defined morphology of polymer electrolytes, particularly at the Na/electrolyte interface, significantly impact dendrite growth. This study provides new insights into the rational design of Na dendrite-suppressing polymer electrolytes, primarily focusing on the ion-regulating ability achieved by surface engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.