Most evolutionary robotics studies focus on evolving some targeted behavior without considering energy usage. In this paper, we extend our simulator with a battery model to take energy consumption into account in a system where robot morphologies and controllers evolve simultaneously. The results show that including the energy consumption in the fitness in a multi-objective fashion reduces the average size of robot bodies while reducing their speed. However, robots generated without size reduction can achieve speeds comparable to robots from the baseline set.
CCS CONCEPTS• Computing methodologies → Artificial intelligence; Artificial life; Evolutionary robotics.
Most evolutionary robotics studies focus on evolving some targeted behavior without taking the energy usage into account. This limits the practical value of such systems because energy efficiency is an important property for real-world autonomous robots. In this paper, we mitigate this problem by extending our simulator with a battery model and taking energy consumption into account during fitness evaluations. Using this system we investigate how energy awareness affects the evolution of robots. Since our system is to evolve morphologies as well as controllers, the main research question is twofold: (i) what is the impact on the morphologies of the evolved robots, and (ii) what is the impact on the behavior of the evolved robots if energy consumption is included in the fitness evaluation? The results show that including the energy consumption in the fitness in a multi-objective fashion (by NSGA-II) reduces the average size of robot bodies while at the same time reducing their speed. However, robots generated without size reduction can achieve speeds comparable to robots from the baseline set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.