General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
An important class of black-box optimization problems relies on using simulations to assess the quality of a given candidate solution.Solving such problems can be computationally expensive because each simulation is very time-consuming. We present an approach to mitigate this problem by distinguishing two factors of computational cost: the number of trials and the time needed to execute the trials. Our approach tries to keep down the number of trials by using Bayesian optimization (BO) -known to be sample efficient-and reducing wall-clock times by parallel execution of trials. We compare the performance of four parallelization methods and two model-free alternatives. Each method is evaluated on all 24 objective functions of the Black-Box-Optimization-Benchmarking (BBOB) test suite in their five, ten, and 20-dimensional versions. Additionally, their performance is investigated on six test cases in robot learning. The results show that parallelized BO outperforms the state-of-the-art CMA-ES on the BBOB test functions, especially for higher dimensions. On the robot learning tasks, the differences are less clear, but the data do support parallelized BO as the 'best guess', winning on some cases and never losing.
Most evolutionary robotics studies focus on evolving some targeted behavior without considering energy usage. In this paper, we extend our simulator with a battery model to take energy consumption into account in a system where robot morphologies and controllers evolve simultaneously. The results show that including the energy consumption in the fitness in a multi-objective fashion reduces the average size of robot bodies while reducing their speed. However, robots generated without size reduction can achieve speeds comparable to robots from the baseline set. CCS CONCEPTS• Computing methodologies → Artificial intelligence; Artificial life; Evolutionary robotics.
Most evolutionary robotics studies focus on evolving some targeted behavior without taking the energy usage into account. This limits the practical value of such systems because energy efficiency is an important property for real-world autonomous robots. In this paper, we mitigate this problem by extending our simulator with a battery model and taking energy consumption into account during fitness evaluations. Using this system we investigate how energy awareness affects the evolution of robots. Since our system is to evolve morphologies as well as controllers, the main research question is twofold: (i) what is the impact on the morphologies of the evolved robots, and (ii) what is the impact on the behavior of the evolved robots if energy consumption is included in the fitness evaluation? The results show that including the energy consumption in the fitness in a multi-objective fashion (by NSGA-II) reduces the average size of robot bodies while at the same time reducing their speed. However, robots generated without size reduction can achieve speeds comparable to robots from the baseline set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.