This is a wide epidemiological study of 499 E. coli isolates recovered from 179 outbreaks of enteric colibacillosis from pig production farms in Spain during a period of 10 years. Most samples were of diarrheagenic cases occurred during the post-wean period (PWD) which showed to be significantly associated with ETEC (67%) followed by aEPEC (21.7%). On the contrary, aEPEC was more prevalent (60.3%) among diarrheas of suckling piglets, followed by ETEC (38.8%). STEC/ETEC or STEC were recovered in 11.3 and 0.9% of PWD and neonatal diarrhea, respectively. Detection of the F4 colonization factor was not significantly different between isolates recovered from neonatal pigs and those recovered post wean (40.5 versus 27.7%) while F18 was only present among PWD isolates (51.5% of ETEC, STEC, and STEC/ETEC isolates). We also found a high prevalence of resistance to colistin related to the presence of the mcr-1 gene (25.6% of the diarreagenic isolates). The characterization of 65 representative mcr-1 isolates showed that all were phenotypically resistant to colistin (>2 μg/ml), and most (61 of 65) multidrug-resistant (MDR). Six ETEC and one STEC mcr-1 isolates were also carriers of ESBL genes. In addition, other seven mcr-1 isolates harbored mcr-4 (three ETEC) and mcr-5 (two ETEC and two aEPEC) genes. In the phylogenetic analysis of the 65 mcr-1 diarrheagenic isolates we found that more than 50% (38 out of 65) belonged to A-ST10 Cplx and from those, 29 isolates showed the clonotype CH11-24. In this study, we also recovered 18 ST131 isolates including seven mcr-1 carriers. To the best of our knowledge, this would be the first report of ST131 mcr-1 isolation in pigs. Worryingly, the swine mcr-1 ST131 carriers also showed MDR, including to trimethoprim-sulfamethoxazole, tobramycin, gentamicin and ciprofloxacin. In the PFGE-macrorestriction comparison of clinical swine and human ST131, we found high similarities (≥85%) between two pig and two human ST131 isolates of virotype D5. Acquisition of mcr-1 by this specific clone means an increased risk due to its special feature of congregating virulence and resistance traits, together with its spread capability. Here we show a potential zoonotic swine source of ST131.
The aim of the present study was to examine the prevalence and determine the molecular characteristics of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) causing bacteraemia in a Spanish Hospital over a 12-year period (2000 to 2011). As far as we know, this is the first study which has investigated and compared the serotypes, phylogroups, clonotypes, virotypes, and PFGE profiles of ST131 and non-ST131 clones of bacteraemia ESBL-EC isolates. Of the 2,427 E. coli bloodstream isolates, 96 (4.0%) were positive for ESBL production: 40 for CTX-M-15, 36 for CTX-M-14, eight for CTX-M-1, four for CTX-M-9, CTX-M-32, and SHV-12. The number of ESBL-EC increased from 1.0% during 2000 to 2005 to 5.5% during 2006–2011 ( P < 0.001). The 96 ESBL-EC isolates belonged to 36 different STs. The commonest was ST131 (41 isolates), followed by ST58, ST354, ST393 and ST405 (four isolates each). Most CTX-M-15 isolates (87.5%, 35/40) were ST131, whereas the 36 CTX-M-14 isolates belonged to 23 different STs and only 3 (8.3%) of them were ST131. The 35 ST131 CTX-M-15-producing isolates belonged to the H 30Rx subclone and 29 of them showed the virotype A. A drastic change in ST131 virotypes happened in 2011 due to the emergence of the virotypes E ( sat , papGII , cnf1 , hlyA , and kpsMII-K5 ) and F ( sat , papGII , and kpsMII-K5 ) which displaced virotype A ( afa/draBC , afa operon FM955459, sat , and kpsMII-K2 ). Although the 96 ESBL-EC isolates showed 21 O serogroups and 17 H flagellar antigens, 39 belonged to serotype O25b:H4 (ST131 isolates). The second most prevalent serotype (O15:H1) was found to be associated with another important high-risk clone (ST393). In conclusion, the ST131 was the most frequent sequence type, being the H 30Rx subclone responsible for the significant increase of ESBL-EC isolates since 2006. Here, we report two new virotypes (E and F) of the H 30Rx subclone emerged in 2011. Future molecular studies are needed to understand the dynamics of expansion of this successful high-risk subclone in order to prevent its spread and establish the importance of the two new virotypes.
Antimicrobial agents are crucial for the treatment of many bacterial diseases in pigs, however, the massive use of critically important antibiotics such as colistin, fluoroquinolones and 3rd–4th-generation cephalosporins often selects for co-resistance. Based on a comprehensive characterization of 35 colistin-resistant Escherichia coli from swine enteric colibacillosis, belonging to prevalent Spanish lineages, the aims of the present study were to investigate the characteristics of E. coli clones successfully spread in swine and to assess the correlation of the in vitro results with in silico predictions from WGS data. The resistome analysis showed six different mcr variants: mcr-1.1; mcr-1.10; mcr-4.1; mcr-4.2; mcr-4.5; and mcr-5.1. Additionally, blaCTX–M–14, blaCTX–M–32 and blaSHV–12 genes were present in seven genomes. PlasmidFinder revealed that mcr-1.1 genes located mainly on IncHI2 and IncX4 types, and mcr-4 on ColE10-like plasmids. Twenty-eight genomes showed a gyrA S83L substitution, and 12 of those 28 harbored double-serine mutations gyrA S83L and parC S80I, correlating with in vitro quinolone-resistances. Notably, 16 of the 35 mcr-bearing genomes showed mutations in the PmrA (S39I) and PmrB (V161G) proteins. The summative presence of mechanisms, associated with high-level of resistance to quinolones/fluoroquinolones and colistin, could be conferring adaptive advantages to prevalent pig E. coli lineages, such as the ST10-A (CH11-24), as presumed for ST131. SerotypeFinder allowed the H-antigen identification of in vitro non-mobile (HNM) isolates, revealing that 15 of the 21 HNM E. coli analyzed were H39. Since the H39 is associated with the most prevalent O antigens worldwide within swine colibacillosis, such as O108 and O157, it would be probably playing a role in porcine colibacillosis to be considered as a valuable subunit antigen in the formulation of a broadly protective Enterotoxigenic E. coli (ETEC) vaccine. Our data show common features with other European countries in relation to a prevalent clonal group (CC10), serotypes (O108:H39, O138:H10, O139:H1, O141:H4), high plasmid content within the isolates and mcr location, which would support global alternatives to the use of antibiotics in pigs. Here, we report for first time a rare finding so far, which is the co-occurrence of double colistin-resistance mechanisms in a significant number of E. coli isolates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.