Thermoplastics composites show vast promise as an alternative for thermal management applications in the scope of the development of next-generation electronics and heat exchangers. Their low cost, reduced weight, and corrosion resistance make them an attractive replacer for traditionally used metals, in case their thermal conductivity (TC) can be sufficiently increased by designing the material (e.g., filler type and shape) and processing (e.g., dispersion quality, mixing, and shaping) parameters. In the present contribution, the relevance of both types of parameters is discussed, and guidelines are formulated for future research to increase the TC of thermoplastic polymer composites. POLYM. ENG. SCI., 58:466-474, 2018.
The impact of the slit die geometry and the polymer melt flow characteristics on the extrudate swell behavior, which is a key extrusion operating parameter, is highlighted. Three-dimensional (3D) numerical simulations based on the finite element method are compared with their conventional two-dimensional (2D) counterparts at the same apparent shear rates using ANSYS Polyflow software. The rheological behavior is described by the differential multimode Phan-Thien-Tanner constitutive model, with polypropylene as a reference. It is shown that increasing the aspect ratio of the die geometry (width/height ratio variation from 1 to 20) contributes to a significant change in the 3D extrudate deformation (relative changes of 10% in several directions; absolute changes up to 30%) and delays the equilibrium axial position (up to a factor 10). High aspect ratios induce a switch to contract flow (swell ratio <1) for the edge height swell. The 3D extrudate swell strongly deviates from the 2D simplified case due to the die effect near the wall, even for higher aspect ratios. Also a different relation with the material parameters is recorded. The initially large swell behavior is followed by a small shrinkage flow in the middle height direction which cannot be captured by the 2D counterpart. The findings are supported by a comprehensive analysis of the velocity and stress fields in and out of the slit dies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.