In situ photosynthetic nitrogen‐use efficiency (PNUE, photosynthetic capacity per unit leaf nitrogen) was investigated in species that commonly distributed at different altitudes (600–3700 m above sea level) on Mount Kinabalu. Photosynthetic nitrogen‐use efficiency was lower in species at higher altitudes, with a mean PNUE at 3700 m being one‐third as large as that at 600 m. This difference in PNUE was larger than that explained by the biochemical response to lower air pressures only. Across altitudes a negative correlation between 13C abundance (δ13C) and PNUE was found. Species at higher altitudes tended to have higher δ13C, suggesting that they had a lower conductance for CO2 diffusion from the air to chloroplasts. The lower conductance might be responsible for the lower PNUE in species at higher altitudes. Although leaf nitrogen content per unit area tended to be higher at higher altitudes, it did not seem to contribute to increasing photosynthetic rates. Thus, the idea that a higher nitrogen content at higher altitudes is a compensation for a lower PNUE was not supported. In contrast to the large difference in PNUE among altitudes, PNUE tended to converge within a narrow range among species growing at the same altitude.
Ardisia crenata (Myrsinaceae), an evergreen shrub with attractive red fruits introduced from Japan to the USA for ornamental purpose, invades the understory of mesic hardwood forests, forming dense patches (up to 300 stems per m 2 ), and competitively displaces native understory plants by creating dense local shade. Comparison of the wild genotype that grows in mature evergreen broadleaf forests in central Kyushu, Japan, with the ecotype invading north central Florida revealed how selection for desirable cultivars might have inadvertently selected for traits that enhance the invasive potential of the species. In Japanese wild populations in deeply shaded evergreen forests, natural selection apparently maintained efficient architecture with a low degree of self-shading and large seed mass to enhance seedling shade tolerance. Cultivar selection for showy appearance can explain the greater fecundity but smaller seed size observed in the Florida populations compared to the Japanese population. Artificial selection for densely foliated appearance can also explain the greater degree of self-shading and less-efficient light use in the Florida genotype compared to the Japanese wild type grown under a common environment. Furthermore, the Florida ecotype allocated more biomass to root carbohydrate storage. These trait modifications resulted in slower growth rates, but greater competitive ability to cast shade upon neighbors and higher resprouting potential in the Florida populations. How traits are modified through the processes of artificial selection and cultivation must be taken into consideration in the evolutionary ecology of many other invasive plants introduced as ornamental plants.
Abstract. We studied canopy structure, shoot architecture and light harvesting efficiencies of the species (photon flux captured per unit above-ground plant mass) in a series of exclosures of different age (up to 4.5 yr) in originally heavily grazed grassland in N Japan.Vegetation height and Leaf Area Index (LAI) increased in the series and Zoysia japonica, the dominant in the beginning, was replaced by the much taller Miscanthus sinensis. We showed how this displacement in dominance can be explained by inherent constraints on the above-ground architecture of these two species. In all stands light capture of plants increased with their above-ground biomass but taller species were not necessarily more efficient in light harvesting. Some subordinate species grew disproportionally large leaf areas and persisted in the shady undergrowth. Some other species first grew taller and managed to stay in the better-lit parts of the canopy, but ultimately failed to match the height growth of their neighbours in this early successional series. Their light harvesting efficiencies declined and this probably led to their exclusion. By contrast, species that maintained their position high in the canopy managed to persist in the vegetation despite their relatively low light harvesting efficiencies. In the tallest stands 'later successional' species had higher light harvesting efficiencies for the same plant height than 'early successional' species which was mostly the result of the greater area to mass ratio (specific leaf area, SLA) of their leaves.This shows how plant stature, plasticity in above-ground biomass partitioning, and architectural constraints determine the ability of plants to efficiently capture light, which helps to explain species replacement in this early successional series.Keywords: Canopy structure; Grazing; Light acquisition efficiency; Photon flux; Plant architecture; Plant size inequality; Plasticity.Nomenclature: Makino (1962);Ohwi (1965).Abbreviations: LAI = Leaf area index; LAR = Leaf Area Ratio; LMR = Leaf Mass Ratio; PPFD = Photosynthetically active photon flux density; SLA = Specific Leaf Area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.