Functional MRI at ultra‐high field (UHF, ≥7 T) provides significant increases in BOLD contrast‐to‐noise ratio (CNR) compared with conventional field strength (3 T), and has been exploited for reduced field‐of‐view, high spatial resolution mapping of primary sensory areas. Applying these high spatial resolution methods to investigate whole brain functional responses to higher‐order cognitive tasks leads to a number of challenges, in particular how to perform robust group‐level statistical analyses. This study addresses these challenges using an inter‐sensory cognitive task which modulates top‐down attention at graded levels between the visual and somatosensory domains. At the individual level, highly focal functional activation to the task and task difficulty (modulated by attention levels) were detectable due to the high CNR at UHF. However, to assess group level effects, both anatomical and functional variability must be considered during analysis. We demonstrate the importance of surface over volume normalisation and the requirement of no spatial smoothing when assessing highly focal activity. Using novel group analysis on anatomically parcellated brain regions, we show that in higher cognitive areas (parietal and dorsal‐lateral‐prefrontal cortex) fMRI responses to graded attention levels were modulated quadratically, whilst in visual cortex and VIP, responses were modulated linearly. These group fMRI responses were not seen clearly using conventional second‐level GLM analyses, illustrating the limitations of a conventional approach when investigating such focal responses in higher cognitive regions which are more anatomically variable. The approaches demonstrated here complement other advanced analysis methods such as multivariate pattern analysis, allowing UHF to be fully exploited in cognitive neuroscience.
Abstract:Functional MRI at ultra-high field (UHF, ≥7T) provides significant increases in BOLD contrast-to-noise ratio (CNR) compared with conventional field strength (3T), and has been exploited for reduced field-of-view, high spatial resolution mapping of primary sensory areas. Applying these high spatial resolution methods to investigate whole brain functional responses to higher-order cognitive tasks leads to a number of challenges, in particular how to perform robust group-level statistical analyses.This study addresses these challenges using an inter-sensory cognitive task which modulates top-down attention at graded levels between the visual and somatosensory domains. At the individual level, highly focal functional activation to the task and task difficulty (modulated by attention levels) were detectable due to the high CNR at UHF. However, to assess group level effects, both anatomical and functional variability must be considered during analysis. We demonstrate the importance of surface over volume normalization and the requirement of no spatial smoothing when assessing highly focal activity. Using novel group analysis on anatomically parcellated brain regions, we show that in higher cognitive areas (parietal and dorsal-lateral-prefrontal cortex) fMRI responses to graded attention levels were modulated quadratically, whilst in visual cortex and VIP, responses were modulated linearly. These group fMRI responses were not seen clearly using conventional second-level GLM analyses, illustrating the limitations of a conventional approach when investigating such focal responses in higher cognitive regions which are more anatomically variable. The approaches demonstrated here complement other advanced analysis methods such as multi-variate pattern analysis, allowing UHF to be fully exploited in cognitive neuroscience.
EEG alpha (8-13Hz) oscillations occur throughout the cortex but the generating mechanisms are poorly understood. Opinion is divided between alpha being driven by bottom-up, top-down or both of these processes. Using simultaneous 7T-fMRI-EEG with an eyes open/closed paradigm, we assess the generator of alpha by performing layer-fMRI analysis of GE-BOLD data to determine the strongest BOLD-alpha negative layer correlations. We show that, after accounting for draining vein effects using spatial deconvolution, alpha-BOLD correlations are strongest in the superficial and deep layers suggesting they are predominately driven by top-down processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.